Spelling suggestions: "subject:"mixer"" "subject:"växer""
191 |
CFD modelování mísení kapalin v potrubí / CFD modelling of pipe flow mixing of liquidsPavlíček, David January 2018 (has links)
This work is focused on computational modelling of mixing fluids in pipeline with static mixers. Main objective is to analyze several selected static mixers in a particular industrial application, namely dosing of the aluminium sulphate solution in the clarification process for potable water treatment. The analysis focuses on the degree of mixedness and pressure loss of individual mixers. Further, the aim of this work is to process the search of available types of static mixers. The benefit of this work is at least an effort to motivate the reader to deeper understanding of the mixing fluids, especially by static mixers.
|
192 |
Koincidenční detektor FM - laboratorní přípravek / FM Coincidence Detector - Laboratory EquipmentMlčoch, Jiří January 2009 (has links)
This work is aimed at an analysis of frequency demodulation, design, simulation, and construction of a coincidence demodulator. Chapter 1 explains the basic characteristics of frequency modulated (FM) signals and provides an overview of the required signal bandwidth, the signal spectrum, and the signal-to-noise ratio after demodulation. Chapter 2 describes each type of FM demodulator separately, and it includes all significant types of demodulator for FM radio broadcast. The function of the coincidence demodulator and its characteristics are explained in detail. Chapter 3 contains a theoretical solution of the phase shift network. Calculated values of the circuit elements are verified by simulation with a view to the total harmonic distortion of the demodulator output signal. Chapter 4 describes the front-end circuit of the receiver. Here, the filter design and the mixer circuit description are provided. The final part of the thesis presents the applicable laboratory task.
|
193 |
Zdravotně technické instalace ve výrobním závodě / Sanitation installation in a factoryGerych, Michal January 2014 (has links)
The Master´s thesis solves question about sanitation installations in factory in Přelouč. The theoretical part deals with pumping technique and pumping of wastewater. The work also focuses on possible solutions of the given specialization. The project part solves the sanitation installation of this factory in the selected variant. It is a large hall with administrative part.
|
194 |
Návrh mikrofluidického směšovače / Design of microfluidic mixerAbrahám, Martin January 2016 (has links)
Microfluidic devices are more frequently being used in medicine as they operate with small amounts of test samples, such as blood or reagent chemicals. To work with such substances, effective mixing of the solution is usually required, which emerged as the most challenging problem in microfluidic systems. Due to the minor dimensions of the devices only laminar flow occurs, thus the turbulent eddies do not contribute to the mixing, but only the molecular diffusivity.
|
195 |
Renforcement d'un poly(oxyéthylène) par dispersion de whiskers de cellulose en voie fondue : contraintes et alternatives / Strengthening of a poly(ethylene oxide) by a dispersion of cellulose whiskers in the molten state : threats and alternativesGassiot-Talabot, Alix 03 December 2015 (has links)
L’objectif de cette étude est la réalisation de séparateurs de batterie haute performance par extrusion. Ces électrolytes polymères solides nécessitent d’être perméables au courant ionique mais aussi isolants électrique, tout en étant résistants mécaniquement. Une des possibilités étudiée pour le renfort mécanique est la dispersion de charges nanométriques (whiskers de cellulose) dans un polymère. Les whiskers de cellulose sont des bâtonnets cristallins d’une longueur entre 100 et 300nm et d’un diamètre entre 5 et 20 nm. Lorsque ces charges sont dispersées de façon homogène, elles forment un réseau percolant, améliorant de cette façon le renfort mécanique de la matrice pour de faibles concentrations. Le but est donc de réaliser cette dispersion dans un polymère fondu par extrusion, en comparaison avec le procédé bien établi d’évaporation de solvant. Les difficultés principales viennent de l’agglomération des whiskers de cellulose via des liaisons hydrogènes et du milieu très concentré dans lequel ces charges doivent être dispersées. Ainsi, la première partie de l’étude est de déterminer le processus de préparation des whiskers de cellulose, limitant l'agglomération et permettant d’obtenir une suspension stable. Ce système stable est nécessaire pour la formation d'un réseau par évaporation de solvant. Une fois le protocole optimisé, la deuxième partie de l’étude porte sur la dispersion de ces whiskers dans la matrice fondue au mélangeur interne et en extrusion. Les mélanges et films obtenus sont caractérisés par analyse en rhéologie dynamique, analyse thermique et analyse mécanique. Une dégradation de la matrice ainsi qu’une orientation des whiskers sont observées. Pour contourner ces contraintes, plusieurs alternatives sont utilisées. La première consiste à adsorber un copolymère sur les whiskers ; cette méthode augmente l’effet hydrodynamique mais aucun réseau n’est obtenu. La deuxième alternative est l’utilisation d’un polymère de faible masse molaire, permettant de diminuer la viscosité du mélange et par conséquent de limiter l’orientation des charges. Cette voie permet la formation d’un réseau percolant, tout en évitant la dégradation de la matrice dans l’extrudeuse. La troisième alternative utilise un copolymère de faible masse molaire synthétisé à partir d’un monomère porteur de doubles liaisons. La faible masse molaire permet de diminuer la cristallinité du séparateur et donc d’améliorer les performances ioniques à basse température. Les doubles liaisons permettent une réticulation assurant la tenue mécanique du film / The aim of this study is to produce high-performance battery separators through extrusion. These solid polymer electrolytes should be permeable to ionic current but electrically insulating, all the while maintaining sufficient mechanical resistance. To this end, the dispersion of nanometrics fillers (cellulose whiskers) in a polymer is studied. Cellulose whiskers are crystalline sticks, with a length between 100 and 300 nm and a diameter between 5 and 20 nm. It is well known that a homogeneous dispersion of these fillers allows a percolating network, improving the mechanical reinforcement of the matrix at low concentrations. The goal is to carry out this dispersion in molten polymer through extrusion, as opposed to the well-established solvent evaporation process. The main difficulties are the aggregation of cellulose whiskers which occurs through hydrogen bonding and the concentrated medium in which these fillers are dispersed. The first part of the study is to determine the optimum process to prepare cellulose whiskers in order to limit aggregation and thus obtain a stable aqueous suspension. This stable system is necessary to obtain a percolating network in the polymer matrix through solvent evaporation. Once the protocol optimised, the second part of the study focuses on the dispersion of these whiskers in the molten matrix using both the internal mixer and the extruder. Blends and films are characterized by dynamical rheology analysis, thermal analysis and mechanical analysis: a degradation of the matrix and an orientation of the whiskers are observed. To by-pass these issues, several alternatives are used. The first one involves the adsorption of a copolymer on the whiskers. This method increases the hydrodynamic effect; however no percolation network is obtained. The second alternative is to use a low molar mass polymer. This leads to a decreased polymer viscosity which limits the orientation of the fillers, allowing the percolating network to form and prevents polymer degradation. The third way uses a copolymer with a low mass molar, synthesized from a monomer which carries double bonds. The low molar mass allows the decrease of the separator crystallinity thus improving the ionic performances at low temperatures. The double bonds can crosslink under UV light, which enhances the mechanical strength of the film
|
196 |
Conception d'interfaces boitiers innovantes pour le radar automobile 77-GHz : Application à la conception optimisée d'une chaine de réception radar en boitier / Conception of innovative packages for 77-GHz automotive radar : Application to the design of an optimized packaged radar receiver channelSouria, Charaf-Eddine 22 February 2017 (has links)
Le développement des radars automobiles, à la bande de fréquences 76-77 GHz, a connu une croissance importante au cours de la dernière décennie. Les développements en cours doivent faire face à deux grands défis. Le premier défi est la réduction du coût pour équiper plus de catégories de voitures avec ces radars. Le deuxième défi est l'amélioration des performances du radar afin de satisfaire les demandes croissantes des autorités de sécurité routière et d'équiper la voiture autonome. L'émetteur-récepteur radar automobile constitue le cœur du système. Par conséquent, une pression importante est exercée sur les fournisseurs de semi-conducteurs pour développer des radars de nouvelle génération avec des performances supérieures et à un coût inférieur par rapport aux générations précédentes. Améliorer les performances de l'émetteur-récepteur passe par par l'amélioration de ces quatre paramètres : le facteur de bruit, le niveau de puissance de l'émetteur, le bruit de phase et la dissipation thermique. La réduction de coût peut être obtenue en réduisant le temps de test, les tailles de la puce et du PCB et le coût du boitier. Dans ce travail, nous proposons une réduction du coût du boitier et de la taille du PCB, en plus de l'amélioration de la dissipation thermique grâce à une encapsulation intégré au niveau plaquette (FI-WLP pour Fan-In Wafer Level Package). Le boitier WLCSP (Wafer Level Chip Scale Package), le plus connu FI-WLP, a été choisi pour cette application. C'est la première fois dans l'histoire des semi-conducteurs que le FI-WLP est utilisé pour du Silicium à des fréquences aussi élevées. Le premier chapitre décrit le système radar et ses principaux composants. Il met l'accent sur la contribution de l'émetteur-récepteur, puis le boitier, sur les performances du radar. Le deuxième chapitre fournit une méthodologie pour la modélisation électromagnétiques et la validation expérimentale de ces modèles, appliquée à des structures passives sur puce. Des innovations, améliorant significativement les performances électriques du boitier WLCSP, sont révélées dans le troisième chapitre. La caractérisation du WLCSP est en soi un défi. De nouvelles méthodologies de caractérisation de ce boitier sont alors proposées dans le même chapitre. Par la suite, un nouveau mélangeur encapsulé en WLCSP est conçu et présenté dans le quatrième chapitre. Le facteur de bruit obtenu est à l'état de l'art, malgré l'utilisation du très contraignant boitier FI-WLP. Tous les résultats de simulation de la transition WLCSP et du mélangeur sont validés par des mesures. Cette caractérisation confirme les excellentes performances attendues du boitier et du circuit conçus. / The development of automotive radars, at the frequency band 76-77 GHz, has experienced a significant growth over the last decade. Ongoing developments have to cope with two main challenges. The first challenge is reducing the cost to equip more car categories with these radars. The second challenge is to improve radar performance in order to satisfy the increasing demands of the road safety authorities and to equip the autonomous car. The automotive radar transceiver is the masterpiece of the system. Therefore, significant pressure is exerted on the semiconductor suppliers to develop next generation radars with superior performances and at lower cost than previous generations. Improving the radar transceiver performances requires improving these four main parameters: Noise Figure (NF), Power Amplifier (PA) power, Phase Noise (PN) and heat dissipation. Lowering the cost can be achieved by reducing test time, chip and PCB sizes, and wafers and package costs. We propose, in this work, a reduction of package cost and PCB size and improvement of heat dissipation by using a FI-WLP. The Wafer Level Chip Scale Package (WLCSP), the best known FI-WLP, was chosen for this application. It is the first time, in Silicon semiconductors history, that a FI-WLP is used at such high frequencies. The first chapter describes the radar system in general and its main components. It focuses on the contribution of the transceiver then the package to the radar performances. The second chapter provides a methodology for EM models validation based on the modeling and experimental validation of passive structures on-chip. Innovations, significantly improving the WLCSP electrical performances, are revealed in the third chapter. The characterization of WLP is, itself, a challenge and novel methodologies to perform it are proposed in the same chapter. Thereafter, a new WLCSP packaged mixer, where block core and RF input matching are co-optimized, is designed and presented in the fourth chapter. The obtained NF is at the state-of-the-art, whereas the very constraining FI-WLP is used. All WLCSP transition and mixer simulation results are validated through measurement. This characterization confirms the excellent performances expected from this novel package and circuit designs.
|
197 |
Experimental Study of Flow Fields in Moving Bed Biofilm Reactors / Experimentell Studie av Flödesfält i Biofilmsreaktorer med Rörlig BäddChew, Shea Nee January 2023 (has links)
With the rise in global energy prices, as well as energy consumption being the largest source of greenhouse gas emissions, biofilm-based systems utilized for wastewater treatment, such as moving bed biofilm reactors (MBBRs), have grown in popularity for their lower energy consumption compared to conventional activated sludge processes. However, this technology requires large amounts of energy to constantly distribute and suspend its biofilm carrier within the reactor by either aerators or mechanical mixers. Many studies have been done on optimizing the aeration systems, but limited research has been focused on the mechanical mixing systems. This master’s thesis project aims to narrow the research and data gaps in MBBR mechanical mixing by conducting scaled-down experiments to study the influence of different mixer configurations on carrier’s flow fields in a reactor tank. The main objective is to determine the conditions for good carrier mixing and their energy use efficiency. Other objectives include determining the effects of scaling on carrier flow fields and whether the experimental results can be used to help develop and validate MBBR computational fluid dynamics (CFD) models. The results showed that good carrier mixing occurred in conditions where (1) mixer height was 3 cm from the bottom of the tank, had no inclinations and positioned along a long wall; (2) mixer flows could maintain their momentum; (3) sufficient length was given for mixer jet streams to develop and widen; (4) there was a dual presence of vertical flow loops and horizontal bulk flow loops; (5) 2 mixers did not result in counter- rotating flows; and (6) 2 mixers were not positioned in one corner of the tank. The effects of scaling did not impact the carrier flow fields and was determine by comparing the experimental results from this study with the results from a previous experiment that utilized a smaller tank. The results from this study could qualitatively match with the results of the CFD model. Limitations that occurred during the study when trying to define “good mixing” were also discussed. Lastly, the thesis ends with stating future work and recommendations. / Med stigande globala energipriser och en energiförbrukning som är den största källan till utsläpp av växthusgaser, har biofilmbaserade system för avloppsvattenrening, t.ex. biofilmsreaktorer med rörlig bädd (MBBR), ökat i popularitet tack vare sin lägre energiförbrukning jämfört med konventionella processer med aktivt slam. Denna teknik kräver dock stora mängder energi för att ständigt distribuera och suspendera biofilmbäraren i reaktorn med hjälp av antingen luftare eller mekaniska blandare. Många studier har gjorts för att optimera luftningssystemen, men begränsad forskning har fokuserats på de mekaniska blandningssystemen. Detta examensarbete syftar till att minska forsknings- och dataluckorna inom mekanisk blandning i MBBR genom att genomföra nedskalade experiment för att studera hur olika blandarkonfigurationer påverkar bärarens flödesfält i en reaktortank.Huvudsyftet är att fastställa villkoren för god blandning av bärare och deras energianvändningseffektivitet. Andra mål är att fastställa effekterna av skalning på bärarnas flödesfält och om de experimentella resultaten kan användas för att utveckla och validera CFD-modeller (Computational Fluid Dynamics) för MBBR. Resultaten visade att god bärarblandning inträffade under förhållanden där (1) blandarhöjden var 3 cm från tankens botten, utan lutningar och placerad längs en lång vägg; (2) blandarflöden kunde behålla sitt momentum; (3) tillräcklig längd gavs för blandarjetströmmar att utvecklas och breddas; (4) det fanns en dubbel närvaro av vertikala flödesslingor och horisontella bulkflödesslingor; (5) 2 blandare inte resulterade i motroterande flöden; och (6) 2 blandare inte placerades i ett hörn av tanken. Effekterna av skalning påverkade inte bärarens flödesfält och fastställdes genom att jämföra de experimentella resultaten från denna studie med resultaten från ett tidigare experiment som använde en mindre tank. Resultaten från denna studie kunde kvalitativt matchas med resultaten från CFD-modellen. Begränsningar som uppstod under studien när man försökte definiera "bra blandning" diskuterades också. Slutligen avslutas avhandlingen med att ange framtida arbete och rekommendationer.
|
198 |
Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement SystemsZhang, Yaxin 20 June 2022 (has links)
Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications.
Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies:
• Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz).
• Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation.
• Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques.
• A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed.
• A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc.
• For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc.
• An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain.
• All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements.
• Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure.
• The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents
Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Technology 7
2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12
2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Low-power Low-noise Amplifiers 25
3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27
3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41
3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48
3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55
3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60
3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Low-power Down-conversion Mixers 73
4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74
4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77
4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5 Low-power Multipliers 87
5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89
5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93
5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6 Low-power Receivers 101
6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104
6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111
6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116
6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7 Conclusions 133
7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Bibliography 135
List of Figures 149
List of Tables 157
A Derivation of the Gm 159
A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B Derivation of Yin in the stability analysis 163
C Derivation of Zin and Zout 165
C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D Derivation of the cascaded oP1dB 169
E Table of element values for the designed circuits 171
|
199 |
X-band RF Transmitter Design for Multi-Purpose Small Satellite Communication OperationsGumus, Omer F 01 June 2022 (has links) (PDF)
This thesis provides a description of the analysis, design, and tests of an X-band RF Transmitter communication system for small satellites. X-band transmitter systems are becoming popular in the upcoming deep space missions. Most of the deep-space ground stations have been using X-band frequencies to receive or transmit signals. The X-band (<10 GHz) can offer lower atmospheric losses and up to a couple of Mbps data rates for multiple satellite operations. Nowadays, many small satellites have been using frequency bands such as VHF, UHF, L, and S-band frequencies for communication. From deep space to the ground station, the low-frequency ranges are inadequate in providing Mbps level data rates and enough bandwidth for deep space missions.
The main focus of this thesis was the development of the subsystems such as gain block amplifier, Mixer, Bandpass Filter, and RF power amplifier. The subsystems were designed separately, then they were connected together to perform an end-to-end system test. One of the thesis aims is to design a manageable, power-efficient, and especially cost-effective X-band RF transmitter system. We presented a transmitter system demonstration in this thesis that can also be used in other orbits such as LEO, MEO, or GEO. Additionally, we presented a whole transceiver architecture. However, we focused on specifically designing transmitter subsystems.
Initially, the top-level transmitter system objectives were determined. Then, the link budget was calculated. In the next stage, the RF front-end components were determined. Moreover, we simulated a transmitter system to foresee the output power, EVM, LO and IF frequency requirements, harmonics and spurious signals, cascaded gain and noise figure, and phase noise. From the calculated link budget, we were able to close the link by obtaining a 3 dB link margin. At the end of this calculation, we successfully obtained 1.45 Mbps for uplink data rate and 3.05 Kbps downlink rate. We used modulated signal to evaluate EVM. From the simulated transmitter chain, the output EVM was obtained as 1.456% RMS.
From the filter board, we obtained an 8.5 dB insertion loss at 8.45 GHz. From the Mixer board, we’ve got 10 dB conversion loss and greater than 20 dB isolation between LO-RF ports. From the gain block amplifier board, we obtained a +9 dB gain at 8.45 GHz. The bandpass filter, mixer, and gain block amplifier boards were designed by using FR-4 dielectric material. We also designed a 5 W RF power amplifier board. From this board, we successfully obtained +37 dBm output at bias current at 200 mA. We reached almost 30% Power-added efficiency (PAE). In the end, we connected all the subsystems together using male-to-male SMA connectors to observe output by using a spectrum analyzer. We obtained transmitter output as +10.67 dBm at 8.45 GHz with a -10.7 dBm input power level.
One benefit of this thesis is that its content has inspired other students in the department to develop similar subsystems. The other benefit of this work might be to inspire the way for next-generation X-band communication systems for use in small satellites, such as for deep space missions. This thesis might also be a reference source for institutions with a limited budget to develop a cost-effective satellite communication subsystem and contribute to space exploration for their educational and research objectives.
|
200 |
INVESTIGATION OF ROTATING DETONATION PHYSICS AND DESIGN OF A MIXER FOR A ROTATING DETONATION ENGINEJohn Andrew Grunenwald (17582688) 09 December 2023 (has links)
<p dir="ltr">A fast model of a Rotating Detonation Combustor (RDC) is developed based on the Method of Characteristics (MOC). The model provides a CFD-like solution of an unwrapped 2D RDC flow field in under 10 seconds with similar fidelity as 2D Reacting URANS simulations. Parametric studies are conducted using the simplified model, and the trends are analyzed to gain insight into the underlying physics of rotating detonation combustors. A methodology to assess the performance of operation with multiple waves is presented. The main effect of increasing waves is found to be the increase in the exit Mach number of the combustion chamber. The design process of a mixer component is also presented. The mixer lies downstream of a channel-cooled RDC with subsonic exit and upstream of a Rolls-Royce M250 helicopter engine in open-loop configuration. The mixer dilutes the RDC exhaust with approximately 250% air to condition the flow for the M250 turbine at steady state operation, while also acting as an isolator with a choked throat to prevent back propagation of pressure waves. The mixer aerodynamic design was completed using 2D axisymmetric RANS simulations, and the mechanical design was evaluated using Ansys Mechanical FEA and was found to be able to survive the high thermal stresses present both during the transient heating and steady state operating condition.</p>
|
Page generated in 0.0361 seconds