• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 64
  • 45
  • 10
  • 9
  • 9
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 286
  • 77
  • 67
  • 55
  • 47
  • 33
  • 30
  • 29
  • 27
  • 24
  • 23
  • 23
  • 23
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Positron Emission Tomography to Evaluate Cardiac Remodelling After Collagen Hydrogel Therapy

MacMullin, Mary 22 December 2022 (has links)
Despite the development of therapeutic interventions to prevent mortality following myocardial infarction (MI), there is a significant long-term risk of developing heart failure (HF). Injectable collagen hydrogels have demonstrated considerable promise as a therapeutic solution to reduce adverse ventricle remodeling associated with the development of HF post-MI. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in the degradation of the structural components of the extracellular matrix (ECM). The activation of MMPs following MI is an essential step in the cardiac repair process. However, uncontrolled enzymatic activity during this time has been associated with the formation of adverse fibrosis. Given the role of the proteases in tissue remodeling, MMPs may be a potential biomarker to predict the development of HF. This thesis work seeks to examine the effect of a novel hydrogel matrix therapy on cardiac tissue post-MI using broad-spectrum MMP-targeted radiotracer, [18F]BR3531. In Study 1, serial positron emission tomography (PET) imaging was performed to elucidate the spatial and temporal binding of [18F]BR351 post-MI using a murine model. Imaging was performed by administering [18F]BR351 at time points corresponding with periods of peak MMP activation post-MI. In vivo PET imaging and in vitro autoradiography demonstrated decreased [18F]BR351 binding in the infarct region. In Study 2, the model was used to evaluate the efficacy of a therapeutic collagen hydrogel to attenuate tissue remodeling. The groups that received the matrix treatment exhibited improved [18F]BR351 uptake in the infarct region. However, conflicting results between in vivo imaging and in vitro autoradiography, and immunohistochemistry using MMP2 and MMP9 indicate that [18F]BR351 may not be suited for MMP imaging in mouse models of MI.
212

Expression of Osteoarthritis Biomarkers in Temporomandibular Joints of Mice with and Without Receptor for Advanced Glycation End Products (RAGE)

Chavez Matias, Elizabeth Murayama 01 June 2014 (has links) (PDF)
This thesis will be organized into three chapters discussing the mechanism underlying the onset and progression of osteoarthritis (OA) in the temporomandibular joint (TMJ). Understanding the mechanism of OA development in the TMJ helps in understanding how OA progresses and how to treat this disease. The goal of this investigation is to examine the process of cartilage degeneration and OA biomarker expression in the TMJ to understand their role in TMJ OA onset and development.Chapter one covers mechanisms that are altered in TMJ OA during disease progression. Using animal models with different stressors such as mechanical disturbances, direct injury, and changes in the extracellular matrix composition revealed the role of the different mechanisms that are up-regulated and down regulated during cartilage destruction. Chapter two will cover a paper I wrote that introduces a novel non-invasive technique applied to mice, which induces an early onset of OA in the TMJ. I developed this technique with the aim to provide a new mouse model where the onset and progression of OA more closely mimic the natural TMJ OA progression in humans. The histopathological analysis of the cartilage demonstrates that onset of OA starts at 2 weeks after treatment induction and is aggravated by week eight. This data demonstrated the effectiveness of our technique in inducing OA in the TMJ. Chapter three will cover a second paper I wrote on the association of RAGE with the progression of OA in the TMJ of mice by using mice with and without RAGE expression. RAGE has been show to contribute to the progression of OA by releasing several pro-inflammatory and catalytic cytokines. Additionally, RAGE has been shown to modulate the expression of specific OA biomarkers, including HtrA-1, Mmp-13, and Tgf-β1 in knee cartilage. The objective of this study was to study the effect of knocking out RAGE on the expression of Mmp-1 3, HtrA-1, and Tgf-β1 in the TMJ. After histophatological and quantitative analysis of biomarkers expression, the results demonstrated for the first time that absence of RAGE expression in the TMJ provides a protective effect against development of TMJ OA in mice.
213

Synthesis and pharmacological evaluation of novel anti-tumour prodrugs. Synthesis and pharmacological investigations into novel MMP-activated peptide-based prodrugs of methotrexate as potential cancer therapeutics

Elbakay, Jamal A.M. January 2017 (has links)
Methotrexate (MTX) is an antimetabolite anticancer agent that is used in treatment of multiple cancers, such as acute lymphoblastic leukaemia and osteosarcoma. A lack of selective tumour toxicity is one of the major problems associated with MTX chemotherapy, especially when given at high doses, as in high dose MTX (HDMTX) therapy. MTX causes various toxicity problems including life-threatening nephrotoxicity, haematological toxicity and neurotoxicity. Overcoming this toxicity is of great importance and has been attempted in various ways, not least via the design of prodrugs. The concept of tumour protease, and specifically matrix metalloproteinase (MMP), activated prodrugs was the focus of the work described in this thesis. This concept relies upon attachment of an MMP-sensitive peptide sequence to a specific site in a drug structure, so as to inactive it. The activity of the parent drug is restored once it is activated by the MMPs in the tumour microenvironment. In this work, different MMP-sensitive peptide sequences linked to MTX were synthesised, resulting in 63 MTX prodrugs. The MMP-mediated activation of these conjugates in tumour tissues (specifically HT1080 homogenates) ex vivo was assessed and the results were compared to the activation of these conjugates in various normal tissues specifically liver, kidney and lung. Specific criteria were established for the selection of promising conjugates for more detailed study. From 7 promising compounds, compound 75 was identified as the lead prodrug, demonstrating selective MMP activation, as indicated by inhibition of its activation by broad spectrum MMP inhibitor ilomastat. The pharmacokinetics of compound 75 was studied in tumour (HT1080) xenograft-bearing mice and the results were compared to those obtained from administration of equimolar doses of conventional MTX. Compound 75 led to enhanced tumour concentrations of MTX, with reduced exposure to normal tissues in vivo compared to conventional MTX therapy. Furthermore, the efficacy of equimolar doses of compound 75 and directly dosed MTX in reduction of HT1080 volume were compared. Superior antitumour activity was observed with compound 75 compared to MTX treatment. Compound 75 is the first example of an MMP-activated prodrug to be reported with enhanced therapeutic index, as evidenced by a full in vivo pharmacokinetic analysis and normal tissue metabolism data. The data presented in thesis support the concept of MMP-activated prodrug development, and form a strong foundation upon which to develop a clinically-useful MTX prodrug, with the potential to enhance efficacy and reduce toxicity to the patient. / Libyan government / The full text will be available after the extended embargo: 5th March 2027
214

Synthesis and biological evaluation of MMP-activated anti-cancer prodrugs

Banisalman, Katreen A.F. January 2021 (has links)
The full text will be available at the end of the embargo period: 28th March 2027
215

Molecular Characterization of the Pathophysiology of the Digital Laminae in Acute Carbohydrate-Induced Equine Laminitis

Pawlak, Erica Ann 01 September 2013 (has links)
Equine laminitis is a devastating condition that results in the failure of the tissue responsible for suspending the skeleton within the hoof capsule. The digital laminae is composed of two interdigitated layers, the dermal lamellae surrounding the distal pedal bone, and the epidermal lamellae, which interfaces with the hoof wall. During laminitis, these layers separate, allowing for rotation and sinking of the pedal bone. While there are multiple diseases and physiological conditions associated with the development of laminitis, including sepsis, metabolic syndrome, and unequal weight bearing, the exact cause remains elusive. Prior work by our research group identified the metalloprotease ADAMTS-4 as a potential early instigator of disease. The data presented herein catalogs the distribution of the substrates of this enzyme, aggrecan and versican, the ramifications of ADAMTS-4-mediated versican loss in the laminae, and further expands into the repression of the canonical wnt signaling pathway and potential additional metalloprotease (MMP) involvement in disease, utilizing a model of acute, carbohydrate-induced laminitis. Additionally, samples from other models of laminitis induction and clinical samples were screened for differential expression of relevant gene markers, including versican, members of the canonical wnt signaling pathway, and MMP-1 and -13. Together, these data provide a characterization of laminar pathology in the carbohydrate-induced model, as well as highlighting key similarities and differences amongst multiple methods of disease development, and lay important groundwork for developing clinical therapeutic interventions.
216

Mast cell-mediated intestinal barrier function in homeostasis and disease

Groschwitz, Katherine R. January 2010 (has links)
No description available.
217

SPECTROSCOPIC CHARACTERIZATION OF ZINC HYDROLASES NDM-1 AND MMP-1 FOR DRUG DISCOVERY

yang, hao 27 July 2015 (has links)
No description available.
218

Parathyroid hormone-related protein in giant cell tumour of bone

Cowan, Robert W. 04 1900 (has links)
<p>Giant cell tumour of bone (GCT) is an aggressive primary bone tumour with an unclear etiology that presents with significant local osteolysis due in part to the accumulation of multinucleated osteoclast-like giant cells. However, it is the neoplastic spindle-like stromal cells within GCT that largely direct the pathogenesis of the tumour. I hypothesize that parathyroid hormone-related protein (PTHrP) is a key mediator within GCT that promotes the characteristic osteolytic phenotype by stimulating both bone resorption and giant cell formation. The work presented in this thesis collectively demonstrates that the stromal cells express PTHrP and its receptor, the parathyroid hormone type 1 receptor (PTH1R), and that PTHrP acts in an autocrine/paracrine manner within the tumour to stimulate expression of factors that promote bone resorption. Data are presented that demonstrate that PTHrP stimulates stromal cell expression of the receptor activator of nuclear factor-κB ligand (RANKL), a known essential regulator of osteoclastogenesis, which results in increased formation of multinucleated cells from murine monocytes. Moreover, the GCT stromal cells express matrix metalloproteinase (MMP)-1 and MMP-13. These results suggest that the stromal cells may participate directly in bone resorption through the degradation of type I collagen, the promotion of osteoclast activity, or through a combination of these elements. PTHrP also regulates the expression of MMP-13 by the stromal cells. Experiments with CD40 ligand show that local factors present within the tumour can influence PTHrP expression by the stromal cells and potentiate its catabolic effects by stimulation of RANKL and MMP-13 expression. Together, this thesis presents evidence that suggests PTHrP is an important factor in the pathophysiology of GCT by its actions on promoting catabolism within the tumour. The role of PTHrP in normal physiology and the mechanisms of action presented here suggest that research into the effects of PTHrP within GCT may provide invaluable information that enhances our understanding of the biology of this particularly aggressive bone tumour.</p> / Doctor of Philosophy (PhD)
219

Investigation into the Unique Roles of MMP-2 and MMP-9 in TGFβ-Induced Epithelial-Mesenchymal Transition in Lens Epithelial Cells

Korol, Anna 10 1900 (has links)
<p>Epithelial-mesenchymal transition (EMT) is a pathological process leading to the formation of anterior subcapsular cataract (ASC). Mediated by transforming growth factor beta (TGFβ), EMT involves the transformation of the monolayer of lens epithelial cells (LECs) into spindle-shaped myofibroblasts, which manifest as plaques directly beneath the lens capsule. TGFβ-induced EMT leading to ASC has been associated with the upregulation of two specific matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Having identified MMP-2 and MMP-9 as participants in the formation of cataracts, the specific roles of either of these MMPs have yet to be determined.</p> <p>The current study utilized MMP-2 and -9 knockout (KO) mice to determine their unique roles in TGFβ-induced EMT. First, adenoviral injection of active TGFβ1 into the anterior chamber of MMP-2 KO mice led to the formation of distinct αSMA-positive anterior subcapsular plaques, in contrast to treated MMP-9 KO eyes, which were resistant. Additionally, an <em>ex vivo </em>mouse LEC explant system was established in these KO lines. In the isolated lens epithelial explants, TGFβ triggered a transformation of LECs from a tightly packed cuboidal monolayer to an elongated mesenchymal phenotype. This process involved a disruption in epithelial cell contacts indicated by a loss of E-cadherin, and an acquisition of myofibroblast marker, αSMA. In the absence of MMP-2, TGFβ was still able to induce EMT with E-cadherin loss and concurrent αSMA expression. In contrast, LEC explants from MMP-9 KO mice treated with TGFβ did not acquire a characteristic spindle-like phenotype and showed substantially less αSMA expression. Results from both of these approaches were consistent; MMP-2, but not MMP-9, KO mice stimulated with TGFβ exhibited phenotypic changes typical of those described in ASC formation, namely a loss in cell attachments, multilayering of previously epithelial-like cells, and αSMA reactivity. Therefore, while MMP-2 is not necessary, MMP-9 is critical to TGFβ-induced EMT in LECs.</p> / Master of Science (MSc)
220

Design, Synthesis and Preclinical Evaluation of MT1-MMP Targeted Methotrexate Prodrugs for the Treatment Of Osteosarcoma

Spencer, Hannah L.M. January 2022 (has links)
Bone Cancer Research Trust / The full text will be available at the end of the embargo: 6th October 2027

Page generated in 0.0539 seconds