• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 7
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 61
  • 61
  • 43
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Three-Dimensional Motion Control and Dynamic Force Sensing of a Magnetically Propelled Micro Particle Using a Hexapole Magnetic Actuator

Long, Fei 08 June 2016 (has links)
No description available.
12

Magnetic force microscopy imaging of current paths in integrated circuits with overlayers

Pu, Anle 14 September 2007 (has links)
Imaging of current in internal conductors through magnetic field detection by magnetic force microscopy (MFM) is of growing interest in the analysis of integrated circuits (ICs). This thesis presents a systematic study of the MFM based mapping of current in model circuits by using force and force gradient techniques. In comparing these two techniques, force was found to have a much higher signal to noise ratio (from ~150 to ~580 times) than force gradient at large tip-sample distances considering the presence of thick overlayers in ICs. As a result, force will have better sensitivity and can therefore be used to detect much smaller minimum currents. We have achieved a sensitivity of ~0.64 µA per square-root Hertz in air and ~0.095 µA per squre-root Hertz in vacuum for force with a pinning field with a probe-circuit separation of 1.0 µm. We conclude that the force technique is superior for the application of MFM current imaging of buried conductors, albeit with reduced spatial resolution. Numerical modeling of the MFM images has shown that the simple point probe approximation is insufficient to model MFM images. An extended model, which considers realistic MFM probe geometries and the forces acting on the whole probe, has been shown to be necessary. Qualitative and quantitative comparisons of the experimental and simulation results with this model are in agreement to within experimental uncertainty. The comparisons suggested that the CoCr film thickness is not uniform on the probe, which was verified by scanning electron microscope cross-section images of the probes cut by a focused ion beam. Most notably, the CoCr film was 1.5 times thicker on the cantilever than on the tip. Based on the simulation and experimental results, we have devised a method to accurately locate the current path from MFM images with submicrometer uncertainty. The method was tested for different patterns of model conducting lines. It was shown to be a useful technique for fault location in IC failure analysis when current flows through the devices buried under overlayers and no topographic features are on the surface to provide clues about the positions of the devices. / October 2007
13

Field-Coupled Nano-Magnetic Logic Systems

Pulecio, Javier F. 30 September 2010 (has links)
The following dissertation addresses the study of nano-magnetic devices configured to produce logic machines through magnetostatic coupling interactions. The ability for single domain magnets to reliably couple through magnetostatic interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) devices (p. 36). It was significant to explore how fabrication defects affected the coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic coupling architectures were found to be robust to common fabrication defects. Experiments also verified the functionality of the previously reported MCA majority gate [1] and a novel implementation of a ferromagnetic MCA majority gate is reported. From these results, the study of clocking Magnetic Cellular Automata (MCA) interconnect architectures was investigated (p. 54). The wire architectures were saturated under distinct directions of an external magnetic field. The experimental results suggested ferromagnetic coupled wires were able to mitigate magnetic frustrations better than anti-ferromagnetic coupled wires. Simulations were also implemented supporting the experimental results. Ferromagnetic wires were found to operate more reliably and will likely be the primary interconnects for MCA. The first design and implementation of a coplanar cross wire system for MCA was constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). Simulations were implemented of a simple crossing wire junction to analyze micro-magnetic dynamics, data propagation, and associated energy states. Furthermore, two systems were physically realized; the first system consisted of two coplanar crossing wires and the second was a more complex system consisting of over 120 nano-magnetic cells. By demonstrating the combination of all the possible logic states of the first system and the low ground state achieved by the second system, the data suggested coplanar cross wire systems would indeed be a viable architecture in MCA technology. Finally, ongoing research of an unconventional method for image processing using nano-magnetic field-based computation is presented (p. 79). In magnetic field-based computing (MFC), nano-disks were mapped to low level segments of an image, and the magnetostatic coupling of magnetic dipole moments was directly related to the saliency of a low level segment for grouping. A proof of concept model for two MFC systems was implemented. Details such as the importance of fabricating circular nano-magnetic cells to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force Microscopy, and current results from a complex MFC system is outlined.
14

Low temperature magnetic structure studies of La₂₋₂xSr₁₊₂xMn₂O₇ using scanning probe microscopy

León Brita, Neliza 03 February 2014 (has links)
The high degree of modification through chemical substitution afforded by the perovskite crystal structure and its related counterparts allows a systematic study of structure-property relationships critical to understand the wide variety of exotic phenomena observed in these materials where the spin, charge, orbital, and lattice degrees of freedom are highly correlated. From the multiple phenomena observed in these materials, which includes multiferroicity, catalytic activity, and high temperature superconductivity, this study is concerned with a material that displays colossal magnetoresistance (CMR), La₂₋₂xSr₁₊₂xMn₂O₇; this is a naturally bilayered manganite that exhibits CMR at a paramagnetic to ferromagnetic transition that coincides with an insulator to metal transition. The strong correlation between different degrees of freedom in the material leads to considerable variation in its magnetic properties due to doping even in the small range studied of 0.32 [less than or equal to] x [less than or equal to] 0.4, where the easy axis of magnetization changes from the c-axis to the ab plane. Magnetic force microscopy (MFM) was used for this part of the work, to visualize the local variation of the out of plane (c-axis) magnetization or magnetic microstructure of La₂₋₂xSr₁₊₂xMn₂O₇ for 0.32 [less than or equal to] x [less than or equal to] 0.4 at the exposed ab surface and its evolution due to an applied magnetic field at 4 K. For the x = 0.32 composition, which is close to the out of plane to in plane magnetization transition, a strong preferred magnetization direction within the ab plane or magnetocrystalline anisotropy was observed. The stray magnetic field of the MFM tip perturbs the magnetic microstructure of low coercivity materials like diluted magnetic semiconductors, making it unsuitable for the study of such materials. For this reason, as part of this project a scanning Hall probe microscope (SHPM), a magnetic imaging technique complementary to MFM that uses a Hall sensor that provides a magnetically non-invasive calibrated measurement of the stray fields at the surface of a sample with good resolution (~ 1 [micrometer]), was designed. The construction of a compact cryogenic variable-temperature (77 - 300 K) SHPM, highlighting its features, is described. / text
15

Magnetic force microscopy studies of magnetic domain structure in LaCoO₃ and UMn₂Ge₂

Berg, Morgann Elizabeth 15 January 2015 (has links)
Magnetic force microscopy studies in varying temperature and applied external magnetic field of magnetic thin films of LaCoO₃ under strain and single crystal UMn₂Ge₂ have been performed. In the case of LaCoO₃ thin films the aim is an understanding of the response of the magnetic microstructure to different signs and degrees of strain and a further attempt to distinguish the effect of defects from strain-induced effects. In UMn₂Ge₂ the magnetic microstructure is imaged for the first time and signatures of a possible phase transition at 150 K and crystalline anisotropy are explored. The first portion of this dissertation focuses on the synthesis methods used to produce the samples investigated and the critical role of synthesis in producing high-quality samples. This is followed by a discussion of characterization techniques used to obtain local and global magnetic and structural characteristics, with particular emphasis on magnetic force microscopy including noise characteristics and a discussion of achieving a high force gradient sensitivity by optimizing the fiber-optic interferometer used for cantilever deflection detection. Design elements and features of the multi-mode variable-temperature atomic force microscope used to obtain magnetic force microscopy images are presented and results for LaCoO₃ and UMn₂Ge₂ are discussed. / text
16

Magnetic force microscopy imaging of current paths in integrated circuits with overlayers

Pu, Anle 14 September 2007 (has links)
Imaging of current in internal conductors through magnetic field detection by magnetic force microscopy (MFM) is of growing interest in the analysis of integrated circuits (ICs). This thesis presents a systematic study of the MFM based mapping of current in model circuits by using force and force gradient techniques. In comparing these two techniques, force was found to have a much higher signal to noise ratio (from ~150 to ~580 times) than force gradient at large tip-sample distances considering the presence of thick overlayers in ICs. As a result, force will have better sensitivity and can therefore be used to detect much smaller minimum currents. We have achieved a sensitivity of ~0.64 µA per square-root Hertz in air and ~0.095 µA per squre-root Hertz in vacuum for force with a pinning field with a probe-circuit separation of 1.0 µm. We conclude that the force technique is superior for the application of MFM current imaging of buried conductors, albeit with reduced spatial resolution. Numerical modeling of the MFM images has shown that the simple point probe approximation is insufficient to model MFM images. An extended model, which considers realistic MFM probe geometries and the forces acting on the whole probe, has been shown to be necessary. Qualitative and quantitative comparisons of the experimental and simulation results with this model are in agreement to within experimental uncertainty. The comparisons suggested that the CoCr film thickness is not uniform on the probe, which was verified by scanning electron microscope cross-section images of the probes cut by a focused ion beam. Most notably, the CoCr film was 1.5 times thicker on the cantilever than on the tip. Based on the simulation and experimental results, we have devised a method to accurately locate the current path from MFM images with submicrometer uncertainty. The method was tested for different patterns of model conducting lines. It was shown to be a useful technique for fault location in IC failure analysis when current flows through the devices buried under overlayers and no topographic features are on the surface to provide clues about the positions of the devices.
17

Magnetic force microscopy imaging of current paths in integrated circuits with overlayers

Pu, Anle 14 September 2007 (has links)
Imaging of current in internal conductors through magnetic field detection by magnetic force microscopy (MFM) is of growing interest in the analysis of integrated circuits (ICs). This thesis presents a systematic study of the MFM based mapping of current in model circuits by using force and force gradient techniques. In comparing these two techniques, force was found to have a much higher signal to noise ratio (from ~150 to ~580 times) than force gradient at large tip-sample distances considering the presence of thick overlayers in ICs. As a result, force will have better sensitivity and can therefore be used to detect much smaller minimum currents. We have achieved a sensitivity of ~0.64 µA per square-root Hertz in air and ~0.095 µA per squre-root Hertz in vacuum for force with a pinning field with a probe-circuit separation of 1.0 µm. We conclude that the force technique is superior for the application of MFM current imaging of buried conductors, albeit with reduced spatial resolution. Numerical modeling of the MFM images has shown that the simple point probe approximation is insufficient to model MFM images. An extended model, which considers realistic MFM probe geometries and the forces acting on the whole probe, has been shown to be necessary. Qualitative and quantitative comparisons of the experimental and simulation results with this model are in agreement to within experimental uncertainty. The comparisons suggested that the CoCr film thickness is not uniform on the probe, which was verified by scanning electron microscope cross-section images of the probes cut by a focused ion beam. Most notably, the CoCr film was 1.5 times thicker on the cantilever than on the tip. Based on the simulation and experimental results, we have devised a method to accurately locate the current path from MFM images with submicrometer uncertainty. The method was tested for different patterns of model conducting lines. It was shown to be a useful technique for fault location in IC failure analysis when current flows through the devices buried under overlayers and no topographic features are on the surface to provide clues about the positions of the devices.
18

動吸振器を用いた非線形回転軸系の制振

石田, 幸男, ISHIDA, Yukio, 井上, 剛志, INOUE, Tsuyoshi 07 1900 (has links)
No description available.
19

Studium vortexových stavů v magnetostaticky svázaných magnetických nanodiscích / Spin vortex states in magnetostaticaly coupled magnetic nanodisks

Vaňatka, Marek January 2015 (has links)
Magnetic vortices in ferromagnetic disks are curling magnetization structures characterized by the sense of the spin circulation in the plane of the disk and by the direction of the magnetization in the vortex core. Concepts of memory devices using the magnetic vortices as multibit memory cells have been presented, which brought the high demand for their research in many physical aspects. This work investigates the magnetostatic coupling in pairs of ferromagnetic disks to clarify the influence of nearby disks or other magnetic structures to the vortex nucleation mechanism. To ensure that the vortex nucleation is influenced only by the neighbouring magnetic structures, the randomness of the nucleation process was studied in single disks prior to the work on pairs of disks. We had to ensure that the vortex nucleation is influenced only by the neighbouring magnetic structures and not by an unwanted geometrical asymmetry in the studied disk. Lithographic capabilities were inspected in order to achieve the best possible geometry. Further we present a concept of electrical readout of the spin circulation using the anisotropic magnetoresistance, which allows automated measurements to provide sufficient statistics. To explain the magnetoresistance behaviour, numerical calculations together with magnetic force microscopy measurements are presented.
20

On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature

Ariskina, Regina, Stiller, Markus, Precker, Christian E., Böhlmann, Winfried, Esquinazi, Pablo D. 28 September 2023 (has links)
Granular superconductivity at high temperatures in graphite can emerge at certain two-dimensional (2D) stacking faults (SFs) between regions with twisted (around the c-axis) or untwisted crystalline regions with Bernal (ABA…) and/or rhombohedral (ABCABCA…) stacking order. One way to observe experimentally such 2D superconductivity is to measure the frozen magnetic flux produced by a permanent current loop that remains after removing an external magnetic field applied normal to the SFs. Magnetic force microscopy was used to localize and characterize such a permanent current path found in one natural graphite sample out of ∼50 measured graphite samples of different origins. The position of the current path drifts with time and roughly follows a logarithmic time dependence similar to the one for flux creep in type II superconductors. We demonstrate that a ≃10 nm deep scratch on the sample surface at the position of the current path causes a change in its location. A further scratch was enough to irreversibly destroy the remanent state of the sample at room temperature. Our studies clarify some of the reasons for the difficulties of finding a trapped flux in a remanent state at room temperature in graphite samples with SFs.

Page generated in 0.0568 seconds