Spelling suggestions: "subject:"cagnetic properties."" "subject:"cmagnetic properties.""
191 |
Fabrication of Nano-Channel Templates and a Study of the Electrical and Magnetic Properties of Nanowires Grown in Template PoresSingh, Abhay Pratap 05 1900 (has links)
This thesis is a study of the structural, electrical and magnetic properties of indium antimonide (InSb) nanowires (NWs), that were synthesized by a template-assisted ordered growth technique via electrochemical deposition. InSb was chosen for this study because of its intrinsic properties that make it a material of choice for applications in high channel mobility, infrared (IR) sensing, thermoelectrics, and magnetoresistive sensing martials. This work has four main components: (i) Growth in commercially available anodic aluminum oxide (AAO) template, where hole-dominated conduction was observed, following NW growth in a low pH electrolyte. The challenge in using these AAO templates was in covering the back surface of the pores with a metal film. Uncovered pores resulted in electrolyte leakage and non-reproducible results. (ii) Growth in flexible polycarbonate membranes, where the flexibility of the membranes resulted in polycrystalline or high defect density NW growth. (iii) Fabrication of an AAO template, where the barrier layer thinning technique was found to be efficient in removal of the think aluminum oxide barrier that exists at the interface between the template and the aluminum metal. This allows for direct growth of NWs into the template pores without the need for metal evaporation. (iv) Fabrication of a heterostructure comprising of an InSb layer sandwiched between two ferromagnetic contacts. Preliminary results show evidence of inverse spin-valve effect at the low temperature of 4K.
|
192 |
Magnetic phase transitions in Gd-rich metallic glassesJantan, Jaafar. January 1985 (has links)
Call number: LD2668 .T4 1985 J365 / Master of Science
|
193 |
Functional nanostructures for magnetic and energy application. / 功能纳米结构在磁性和能源方面的应用 / CUHK electronic theses & dissertations collection / Functional nanostructures for magnetic and energy application. / Gong neng na mi jie gou zai ci xing he neng yuan fang mian de ying yongJanuary 2009 (has links)
FePt/B4C multilayer thin films are deposited on silicon substrates using magnetron sputtering with different B4C layer thickness. Experimental results suggest that the B4C layers effectively serve as spacers to separate the FePt layers, making the multilayer configuration stable even after film annealing at elevated temperatures. On the other hand, B and C are found to be incorporated into the FePt layer, which is responsible for the FePt grain growth confinement and grain separation, and eventually affects the properties of the composite film. Based on the experimental results of multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite thin films on Si substrate are synthesized, in which a record coercivity of 2200 Oe is achieved compared to similar system. The size uniformity of the FePt nanoparticles, the well-defined particle-particle separation, together with the good magnetic property and high temperature thermal stability of the overall composite film, make it a very promising candidate for the ultrahigh density magnetic storage media. / Functional nanostructures serve as the basic building blocks for nanodevices and significant efforts have been devoted to their morphology control and properties optimization. In present study, four functional nanostructures, i.e., FePt/B4C multilayer composite film, particle (FePt)/matrix (B4C) monolayer composite film, Ga-doped ZnO nanowire arrays, and CdSe nanotube arrays are designed, synthesized and characterized in detail, in which the first two are expected to be prominent candidates for ultrahigh-density magnetic storage media while the later two have potential applications in solar energy conversion. / Semiconductor based one-dimensional nanostructures are investigated as promising building blocks for solar energy conversion devices. Two aspects are explored, aiming at increasing the energy conversion efficiency, i.e., facilitating electron transport and enhancing photon absorbing. In the first case, large area Ga-doped ZnO nanowire arrays are grown on transparent conducting substrate. Experimental results reveal the well-aligned array morphology and the uniform Ga concentration in these nanowires. In particular, direct I-V measurements performed on single nanowire-on-ITO substrate disclose its Ohmic contact with the conducting substrate and the significant conductivity improvement compared to undoped ZnO nanowire, In the second case, a novel synthesis strategy for nanotube arrays is developed and CdSe is used for demonstration, which material possessing more appropriate band gap as effective light harvester compared to that of materials for existing semiconductor nanotube arrays. The controllable tube wall thickness that can be increased until continuous CdSe porous network is obtained. The experimental results suggest a nanotube array formation mechanism that can be generally applied to a wide range of materials. / Zhou, Minjie = 功能纳米结构在磁性和能源方面的应用 / 周民杰. / Adviser: Li Quan. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 91-100). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zhou, Minjie = Gong neng na mi jie gou zai ci xing he neng yuan fang mian de ying yong / Zhou Minjie.
|
194 |
Magnetic Properties of Transition Ion PyrophosphatesFowlis, David Colin 12 1900 (has links)
<p> The magnetic properties of MnP2O7, CuP2O7, Co2P2O7
and Ni2P2O7 were studied. They were investigated using
magnetic susceptibility and magnetic resonance techniques. They were all found to become magnetically ordered between 10°K and 30°K. In all the predominant exchange interaction was antiferromagnetic. Ni2P2O7 however did show a resultant
moment at low temperatures which was attributed to weak
ferrornagnetism. The experimental results were analysed in
the molecular field approxmation which accounted for their behaviour except in the case of Cu2P2O7 where the
High Temperature Series Expansion method was necessary to explain the temperature dependence of its paramagnetic susceptibility. </p> / Thesis / Doctor of Philosophy (PhD)
|
195 |
UV Magnetic Plasmons in Cobalt NanoparticlesBhatta, Hari Lal 05 1900 (has links)
The main goals of this research were to fabricate magnetic cobalt nanoparticles and study their structural, crystal structure, optical, and magnetic properties. Cobalt nanoparticles with average particle size 8.7 nm were fabricated by the method of high temperature reduction of cobalt salt utilizing trioctylphosphine as a surfactant, oleic acid as a stabilizer, and lithium triethylborohydride as a reducing reagent. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the formation of cobalt nanoparticles. High resolution transmission electron microscopy images show that Co NPs form both HCP and FCC crystal structure. The blocking temperature of 7.6 nm Co NPs is 189 K. Above the blocking temperature, Co NPs are single domain and hence showed superparamagnetic behavior. Below the blocking temperature, Co NPs are ferromagnetic. Cobalt nanoparticles with a single-domain crystal structure support a sharp plasmon resonance at 280 nm. Iron nanoparticles with average particle size 4.8 nm were fabricated using chemical reduction method show plasmon resonance at 266 nm. Iron nanoparticles are ferromagnetic at 6 K and superparamagnetic at 300 K.
|
196 |
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites NanocrystalsSong, Qing 26 August 2005 (has links)
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals
Qing Song
216 pages
Directed by Dr. Z. John Zhang
The correlationship between magnetic properties and magnetic couplings is established through the investigations of various cubic spinel ferrite nanocrystals. The results of this thesis contribute to the knowledge of size and shape controlled synthesis of various spinel ferrites and core shell architectured nanocrystals as well as the nanomagnetism in spinel ferrites by systematically investigating the effects of spin orbital coupling, magnetocrystalline anisotropy, exchange coupling, shape and surface anisotropy upon superparamagnetic properties of spinel ferrite nanocrystals. A general synthetic method is developed for size and shape control of metal oxide nanocrystals. The size and shape dependent superparamagnetic properties are discussed. The relationship between spin orbital coupling and magnetocrystalline anisotropy is studied comparatively on variable sizes of spherical CoFe2O4 and Fe3O4 nanocrystals. It also addresses the effect of exchange coupling between magnetic hard phase and soft phase upon magnetic properties in core shell structured spinel ferrite nanocrystals. The role of anisotropic shapes of nanocrystals upon self assembled orientation ordered superstructures are investigated. The effect of thermal stability of molecular precursors upon size controlled synthesis of MnFe2O4 nanocrystals and the size dependent superparamagnetic properties are described.
|
197 |
Glass Forming Ability, Magnetic Properties, and Mechanical Behavior of Iron-Based and Cobalt-Based Metallic GlassesVeligatla, Medha 12 1900 (has links)
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. In particular, low coercivity and high permeability of iron and cobalt based metallic glass compositions could potentially lead to extensive commercial use as magnetic heads, transformer cores, circuits and magnetic shields. In the current study, few metallic glass compositions were synthesized by systematically varying the iron and cobalt content. Thermal analysis was done and included the measurement of glass transition temperature, crystallization temperature, and the enthalpies of relaxation and crystallization. Magnetic properties of the alloys were determined including saturation magnetization, coercivity, and Curie temperature. The coercivity was found to decrease and the saturation magnetization was found to increase with the increase in iron content. The trend in thermal stability, thermodynamic properties, and magnetic properties was explained by atomic interactions between the ferromagnetic metals and the metalloids atoms in the amorphous alloys. Mechanical behavior of iron based metallic glasses was evaluated in bulk form as well as in the form of coatings. Iron based amorphous powder was subjected to high power mechanical milling and the structural changes were evaluated as a function of time. Using iron-based amorphous powder precursor, a uniform composite coating was achieved through microwave processing. The hardness, modulus, and wear behavior of the alloys were evaluated using nano-indentation.
|
198 |
THEORY OF CORRELATION TIMES IN CHIRAL ANTIFERROMAGNETS: TOWARDS ULTRA-FAST PROBABILISTIC COMPUTATIONSagnik Banerjee (17976782) 04 December 2024 (has links)
<p dir="ltr">Antiferromagnetic spintronics promises next-generation information processing devices with ultra-fast speeds and ultra-low power consumption. Inspired by the recent demonstration of signatures of Tunnel Magnetoresistance (TMR) in non-colinear chiral antiferromagnets of the Mn<sub>3</sub>X family, we study the thermal stability of such magnets in both low and high barrier limits. A stochastic Landau-Lifshitz-Gilbert (s-LLG) based numerical assessment of the dynamics reveals that strong exchange fields in Mn<sub>3</sub>Sn could lead to thermally-driven rapid fluctuations of the order parameter, viz., octupole moment. However, distinct Random Telegraph Noise (RTN)-like signals distinguish the high barrier limit from the low barrier limit - suggesting different physical phenomena in the two regimes. To that end, the correlation time for thermal fluctuations has been explored analytically following an approach inspired by Langer's theory in the high barrier limit and dephasing mechanisms in the low barrier limit. It has been shown that the dynamics in chiral antiferromagnetic nanoparticles in both regimes are an order of magnitude faster than easy plane ferromagnetic particles. The thermal instability of chiral antiferromagnets could lead to picosecond-scale random number generation in probabilistic bits -- paving the path toward ultra-fast probabilistic computation. </p>
|
199 |
Magneto-optics of InAs/GaSb heterostructuresVaughan, Thomas Alexander January 1995 (has links)
The optical properties of InAs/GaSb heterostructures under applied magnetic fields are studied in experimental and theoretical detail. The InAs/GaSb system is a type-II "crossed-gap" system, where the valence band edge of GaSb lies higher in energy than the conduction band edge of InAs. This leads to a region of energy above the InAs conduction band where conduction and hole states mix. Thin-layer superlattices remain semiconducting due to confinement effects, but thick-layer superlattices experience charge transfer which leads to intrinsic carrier densities approaching 10<sup>12</sup> cm<sup>-2</sup> per layer. Existing multi-band modeling techniques based on the <strong>k·p</strong> formalism are discussed, and a method of solving superlattice band structure (the "momentum-matrix" technique) is presented. The quantizing effects of the superlattice layers and applied magnetic fields are investigated, and the selection rules for optical transitions are derived. Standard cyclotron resonance (CR) is used to study effective masses in InAs/GaSb structures. The heavy hole mass is found to be strongly orientation-dependent, with a mass in the [111] orientation reduced 25% from the [001] mass. The electron mass is found to be roughly isotropic with respect to growth orientation, but shows variation with the InAs width due to quantum confinement effects. CR of InAs/GaSb heterojunctions display hitherto unexplained oscillations in linewidth, intensity, and effective mass. A model is proposed which explains the oscillations, based on the intrinsic nature of the InAs/GaSb system. CR is performed on an InAs/GaSb heterojunction using a free-electron laser, where due to the high intensities (on the order of MW/cm<sup>2</sup>) the absorption process saturates. This saturation allows for a determination of non-radiative relaxation lifetimes, and through the energy dependence of these lifetimes the magnetophonon effect is observed, allowing a direct measurement of LO-phonon-assisted energy relaxation rates. Coupling is introduced into the standard CR experiment, either by tilting the sample with respect to the magnetic field, or by applying a metal grating to the surface. These coupled CR experiments have striking qualitative results which allow for determination of subband separation energies and coupling matrix elements. Photoconductivity experiments are performed on thin-layer (semiconducting) superlattices, showing optical response at far-infrared wavelengths (5-20 μm). The results are compared with <strong>k·p</strong> calculations. One sample is processed for vertical transport, in which conduction occurs perpendicular to the superlattice layers. Strong optical response from this sample indicates the viability of InAs/GaSb-based far-infrared detectors. The momentum-matrix technique is used to predict optimum parameters for semiconducting superlattices with band gaps in the far-infrared. Semimetallic structures are studied via a multi-band self-consistent model, with results corroborating with and extending previous work. Intrinsic structures under applied magnetic field are modeled theoretically for the first time.
|
200 |
A study of the magnetic properties of and intervalence electron transfer in [Co(phen)₂]₃ [Fe(CN)₆]₂*23H₂OJones, R. David. January 1985 (has links)
Call number: LD2668 .T4 1985 J665 / Master of Science
|
Page generated in 0.2494 seconds