• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 4
  • 1
  • Tagged with
  • 27
  • 27
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spin Manipulation of the Nitrogen Vacancy Center and its Applications

Staacke, Robert 10 August 2021 (has links)
Das Stickstoff-Fehlstellen-Zentrum (NV-Zentrum) in Diamant ist eines der vielver- sprechendsten Spinsysteme für Anwendungen im Bereich Quanten-Computing, -Information und -Sensorik. Die Abhängigkeit der Fluoreszenzintensität vom Spinzu- stand ermöglicht dabei das rein optische Auslesen des Spinzustandes. Für alle Anwendungen, die auf aktive Spinmanipulation angewiesen sind, ist Mikrowellen- strahlung unverzichtbar. Die Fähigkeit, den Spinzustand von NV-Zentren vollständig zu kontrollieren, wird durch die Richtung, Intensität und Polarisation der Mikrow- ellenstrahlung definiert. Es gibt verschiedene Ansätze, um geeignete Mikrowellen- strahlung zu erzeugen, aber oft ist die Feldintensität zu gering oder es gibt andere Einschränkungen, z.B. eine geringe Frequenzbandbreite. Im ersten Teil meiner Arbeit untersuche ich transparente Leiter auf Basis von Indium- Zinn-Oxid (ITO), um die Mikrowellenansteuerung von NV-Zentren zu optimieren. Dabei wird eine detaillierte Analyse von ITO auf Diamant bezüglich einzelner NV-Zentren vorgestellt. Ein mathematisches Modell wurde entwickelt, um die Feldverteilung vorherzusagen. Zusätzlich wird eine Methode zur Kontrolle der Mikrowellenpolarisation mit einer transparenten ITO-Struktur vorgestellt, die zu einer vollständigen Kontrolle des Spinzustands des NV-Zentrums führt. Weiterhin werden Simulationen in Kombination mit einem analytischen Modell verwendet, um optimale Mikrowellenparameter für die Spinkontrolle vorherzusagen. Für eine kommerzielle Anwendung von NV-Zentren als Magnetfeldsensor sind Pro- duktionskosten und Bauteilkomplexität wichtige Faktoren, die in der Forschung oft vernachlässigt werden. Der zweite Teil meiner Arbeit konzentriert sich da- her auf einen mikrowellenfreien Ansatz zur Magnetometrie mit NV-Zentren. Der Einfluss der Laseranregung auf den magnetischen Kontrast wird an einzelnen NV- Zentren, Ensembles von NV-Zentren und Nano-Diamantpulver mit einer hohen NV- Zentrenkonzentration dargestellt und nachfolgend zur Demonstration von isotropen Magnetfeldmessung verwendet. Abschließend wird die Anwendbarkeit durch die Konstruktion eines Magnetfeldsensors aus Komponenten der Automobilbranche gezeigt. / The nitrogen vacancy center (NV center) in diamond is one of the most promising spin systems for applications in quantum computing, information and sensing. The dependency of the fluorescence intensity on the spin state allows a purely optical readout of the spin state. A green laser can be used to pump the NV center in the spin ground state while microwave radiation can manipulate the spin state of the NV center. For all applications depending on active spin manipulation, microwave radiation is indispensable. The ability to fully control the spin state of NV centers is defined by direction, strength and polarization of the microwave radiation. Different approaches exist to deliver the microwave radiation, but they often lack in strength or have other restrictions, e.g. a small frequency band width. In the first part of my thesis, I investigate transparent conductors based on indium tin oxide (ITO) to optimize microwave delivery. In this process a detailed analysis of ITO on diamond concerning confocal microscopy through this transparent film is presented. A mathematical model was developed and tested to predict the field distribution in possible applications. Additionally a method to control microwave polarization with a transparent ITO structure is shown which results in full spin state control of the NV center. Furthermore simulations combined with a analytical model are used to predict optimal microwave parameters for spin control. For a commercial application of NV centers as a magnetic field sensor, important factors are production cost and device complexity which are often neglected in research. The second part of my thesis therefore focuses on a microwave free approach of NV center magnetometry for industry applications. The influence of laser excitation on magnetic contrast was studied on single NV centers, ensembles of NV centers and nano diamond powder with a high NV center concentration. The findings were used to demonstrate isotropic magnetic field sensing. Finally, the applicability was shown by constructing a magnetic field sensor from automotive grade components.
12

Etude des performances en bruit de capteurs magneto(élasto)électriques en mode non-linéaire / Studies of the performances in noise of Magneto(Elasto)Electric sensors in nonlinear mode

Yang, May tia 14 December 2017 (has links)
L'effet MagnétoElectrique (ME) traduit la polarisation d'un élément diélectrique et l'aimantation d'un diélectrique lorsqu’il est soumis, respectivement, à un champ magnétique et à un champ électrique. Cette propriété a permis de mettre en œuvre des capteurs Magnéto(Elasto)Electrique pour la mesure du champ magnétique ou électrique. De nombreuses études sur les couplages de matériaux (forme, taille, dimension…) ont été effectuées afin d’améliorer les performances en terme de sensibilité et de bruit de ces capteurs. Les meilleurs niveaux de bruit (en termes de densité spectrale) mesurés pour ce type de dispositif en mode passif sont, respectivement, de 5 pT/sqrt(Hz), 0,2 pT/sqrt(Hz) et environ une cinquantaine de 50 fT/sqrt(Hz), respectivement à 1 Hz, en zone de bruit blanc et à la résonance.Certains laboratoires, dont le GREYC, s’intéressent plus particulièrement à l’étude des performances ultimes de capteurs magnétiques en optimisant, notamment, l’électronique de conditionnements et en utilisant leurs propriétés non linéaires. Cette thèse s’inscrit dans ce cadre. Elle avait pour objectif l’étude des performances de capteur Magnéto(Elasto)Electrique en mode non linéaire et aux basses fréquences. Pour cela, des structures originales de conditionnent ont été développées en termes de polarisation, d’excitation et d’asservissement. L’étude théorique des performances montre que le bruit du capteur peut atteindre des niveaux bien inférieurs au pT/sqrt(Hz) à 1 Hz pour les capteurs étudiés, si les performances obtenues ne sont pas limitées par le bruit de l’électronique de conditionnement et leur sensibilité. Cette étude a été l’objet de ce travail de thèse. / The MagnetoElectric effect traduces the polarization of a dielectric element and the magnetization of a dielectric under respectively a magnetic field and an electric field. This property allows the development of Magneto(Elasto)Electric sensors for measuring a magnetic or an electric field. Several analyses regarding the material coupling (shape, size, dimensions…) have been made in order to increase the performances in terms of sensibility and in terms of noise of these sensors. The best noise levels (in term of spectral density) measured for these types of sensors are respectively 5 pT/sqrt(Hz), 0.2 pT/sqrt(Hz) and around 50 fT/sqrt(Hz) at 1 Hz, at white noise zone and at resonant frequency.Some laboratories, including the GREYC, are interested more specifically on the studies of the ultimate performances of magnetic sensor by optimizing the conditioning electronics and by using their nonlinear properties. This thesis lies in this framework. It had for objective, to study the performances of the Magneto(Elasto)Electric sensor in nonlinear mode and at low frequencies. For these, some original conditioning structures have been developed in terms of polarization, excitation and servo system. The theoretical study of these performances show the sensor intrinsic noise can reach lower than pT/sqrt(Hz) at 1 Hz for the studied sensor if the obtained performances are not limited by the conditioning electronics and their sensitivity. This study has been the object of this thesis work.
13

Magnetic Field Sensing and Nanoparticle Induced Ferromagnetism in Graphene Towards Spintronics

January 2019 (has links)
abstract: Graphene has been extensively researched for both scientific and technological interests since its first isolation from graphite. The excellent transport properties and long spin diffusion length of graphene make it a promising material for electronic and spintronic device applications. This dissertation deals with the optimization of magnetic field sensing in graphene and the realization of nanoparticle induced ferromagnetism in graphene towards spintronic device applications. Graphene has been used as a channel material for magnetic sensors demonstrating the potential for very high sensitivities, especially for Hall sensors, due to its extremely high mobility and low carrier concentration. However, the two-carrier nature of graphene near the charge neutrality point (CNP) causes a nonlinearity issue for graphene Hall sensors, which limits useful operating ranges and has not been fully studied. In this dissertation, a two-channel model was used to describe the transport of graphene near the CNP. The model was carefully validated by experiments and then was used to explore the optimization of graphene sensor performance by tuning the gate operating bias under realistic constraints on linearity and power dissipation. The manipulation of spin in graphene that is desired for spintronic applications is limited by its weak spin-orbit coupling (SOC). Proximity induced ferromagnetism (PIFM) from an adjacent ferromagnetic insulator (FMI) provides a method for enhancing SOC in graphene without degrading its transport properties. However, suitable FMIs are uncommon and difficult to integrate with graphene. In this dissertation, PIFM in graphene from an adjacent Fe3O4 magnetic nanoparticle (MNP) array was demonstrated for the first time. Observation of the anomalous Hall effect (AHE) in the device structures provided the signature of PIFM. Comparison of the test samples with different control samples conclusively proved that exchange interaction at the MNP/graphene interface was responsible for the observed characteristics. The PIFM in graphene was shown to persist at room temperature and to be gate-tunable, which are desirable features for electrically controlled spintronic device applications. The observation of PIFM in the MNP/graphene devices indicates that the spin transfer torque (STT) from spin-polarized current in the graphene can interact with the magnetization of the MNPs. If there is sufficient STT, spin torque oscillation (STO) could be realized in this structure. In this dissertation, three methods were employed to search for signatures of STO in the devices. STO was not observed in our devices, most likely due to the weak spin-polarization for current injected from conventional ferromagnetic contacts to graphene. Calculation indicates that graphene should provide sufficient spin-polarized current for exciting STO in optimized structures that miniaturize the device area and utilize optimized tunnel-barrier contacts for improved spin injection. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
14

Magnetoelectric (ME) composites and functional devices based on ME effect

Gao, Junqi 03 June 2013 (has links)
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i)  the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices. / Ph. D.
15

An Investigation of Measuring Energy and Power During Walking on Slopes Using Foot Mounted Inertial Magnetic sensors

Oagaz, Hawkar Ali 01 August 2017 (has links)
No description available.
16

Développement d’une nouvelle méthode de mesure du rythme cardiaque et du débit sanguin fondée sur les perturbations localisées d’un champ magnétique / Novel method of blood pulse and flow measurement using the disturbance created by blood flowing through a localized magnetic field

Phua, Chee Teck 21 September 2012 (has links)
La mesure et le contrôle du pouls et du flux sanguin en continu sont d'importants paramètres pour l'évaluation de signes essentiels physiologiques sur la condition de santé d'un individu. Les dispositifs commerciaux existants, ainsi que les méthodes de recherche ou utilisées dans le milieu médical exigent un bon contact électrique ou optique pour obtenir cette mesure en continu. Pendant ces travaux de recherche, une méthode originale non invasive de mesure du rythme cardiaque fondée sur la perturbation localisée d'un champ magnétique au passage du flux sanguin a été développée, permettant l'acquisition des signaux à travers les vêtements, la transpiration, les salissures ou autres polluants dans l'environnement proche du capteur. Cette méthode est appelée la Signature Sanguine par Modulation Magnétique (MMSB) et les mesures ont été accomplies sur de multiples individus. Le système a été modélisé mathématiquement et simulé dans un environnement multiphysique, puis validé par l'utilisation des données expérimentales. Les résultats de mesure, en utilisant la méthode MMSB, pour le pouls et le flux sanguin ont été comparés et se trouvent bien corrélés, avec les résultats obtenus grâce à d'autres instruments. De plus, deux dispositifs ont été développés et sont en cours de commercialisation, pour des applications de vie quotidienne / Continuous pulse rate, blood pressure and blood flow monitoring are important for the assessment of physiological vital signs as these are able to provide continuous feedback on the health condition of an individual. Existing commercial, medical and research methods to continuously acquire such these physiological vital signs require good electrical or optical contact. During this research, a magnetic based sensing method, at room temperature, for blood pulse, flow and pressure is developed to achieve data acquisition through fabric, environmental contaminants and body-fluids. This method is named Modulated Magnetic Signature of Blood (MMSB) and physical measurements were conducted on multiple subjects, mathematically modelled and simulated in a multi-physics environment with verification through use of measurement data. Measurement results, using MMSB, for blood pressure and blood flow were compared, and found to be well correlated, with lifestyle device and medical research instruments respectively. In addition, two devices are developed, and are in the midst of commercialization, to support lifestyle applications
17

Geomagnetic Compensation for Low-Cost Crash Avoidance Project

Torres, John C 01 April 2011 (has links)
The goal of this work was to compensate for the effects of the Earth’s magnetic field in a vector field magnetic sensor. The magnetic sensor is a part of a low-cost crash avoidance system by Stephane Roussel where the magnetic sensor was used to detect cars passing when it was mounted to a test vehicle. However, the magnetic sensor’s output voltage varied when it changed orientation with respect to the Earth’s magnetic field. This limited the previous work to only analyze detection rates when the test vehicle travelled a single heading. Since one of the goals of this system is to be low-cost, the proposed solution for geomagnetic compensation will only use a single magnetic sensor and a consumer-grade GPS. Other solutions exist for geomagnetic compensation but use extra sensors and can become costly. In order to progress the development of this project into a commercial project, three separate geomagnetic compensation algorithms and a calibration procedure were developed. The calibration procedure compensated for the local magnetic field when the magnetic sensor was mounted to the test vehicle and allowed for consistent magnetic sensor voltage output regardless of the type of test vehicle. The first algorithm, Compensation Scheme 1 (CS1), characterized the local geomagnetic field with a mathematical function from field calibration data. The GPS heading was used as the input and the output is the voltage level of the Earth’s magnetic field. The second algorithm, Compensation Scheme 1.5, used a mathematical model of the Earth’s magnetic field using the International Geomagnetic Reference Field. An algorithm was developed to take GPS coordinates as an input and output the voltage contributed by the mathematical representation of the Earth’s magnetic field. The output voltages from CS1 and CS1.5 were subtracted from the calibrated magnetic sensor data. The third algorithm, Compensation Scheme 2 (CS2), used a high pass filter to compensate for changes of orientation of the magnetic sensor. All three algorithms were successful in compensating for the geomagnetic field and vehicle detection in multiple car headings was possible. Since the goal of the magnetic sensor is to detect vehicles, vehicle detection rates were used to evaluate the effectiveness of the algorithms. The individual algorithms had limitations when used to detect passing cars. Through testing, it was found that CS1 and CS1.5 algorithms were suitable to detect vehicles while stopped in traffic while the CS2 algorithm was suitable vehicle detection while the test vehicle is moving. In order to compensate for the limitations of the individual algorithms, a fused algorithm was developed that used a combination of CS1 and CS2 or CS1.5 and CS2. The vehicle speed was used in order to determine which algorithm to use in order to detect cars. Although the goal of this project is not vehicle detection, the rate of successful vehicle detection was used in order to evaluate the algorithms. The evaluation of the fused algorithm demonstrated the value of using CS1 and CS1.5 to detect vehicles when stopped in traffic, which CS2 algorithm cannot do. For a study conducted in traffic, using the fused algorithm increased vehicle detection rates by 51%-62% from using the CS2 algorithm alone. Since this work successfully compensated for geomagnetic effects of the magnetic sensor, the low-cost crash avoidance system can be further developed since it is no longer limited to driving in a single direction. Other projects that experience unwanted geomagnetic effects in their projects can also implement the knowledge and solutions used in this work.
18

Analyses structurales et contrôle de l'aimantation par sonde de Hall planaire dans des dispositifs nanostructurés / Structural analysis and magnetisation control with planar Hall sensor in nanostructural compounds

Dehbaoui, Mourad 12 December 2013 (has links)
Dans un effort de combiner le bénéfice des propriétés magnétiques et électroniques, les semi-Conducteurs magnétiques dilués sont projetés pour être à la base de composants reliant dans leur fonctionnement, à la fois la charge et le spin des électrons. Par l'utilisation d'une technique de magnétométrie à effet Hall, on a fait la caractérisation de ces matériaux par la détermination de l'orientation magnétique à basse température. Nous nous sommes aussi intéressés aux matériaux moléculaires à transition de spin (SCO). La technologie des capteurs magnétiques offre une voie vers la vulgarisation des techniques de détection par l'utilisation de systèmes rapides et sensibles. La détection de la transition de spin des nanoparticules est réalisée par un capteur à effet Hall planaire, fabriqué à base de multicouches magnétiques. Le travail effectué est pionnier dans le domaine de la détection nano magnétique, il ouvre la voie à de nouvelles perspectives dans la recherche fondamentale et dans le développement technologique des capteurs magnétiques. Des améliorations du dispositif ont été réalisées et d'autres sont en stage de développement pour l'amélioration de la sensibilité et la réduction du bruit. L'optimisation devrait fournir un dispositif original de détection de transition de spin des nanoparticules à température ambiante. / In an effort to combine the benefits of magnetic and electronic properties, diluted magnetic semiconductors are projected to be the basis for devices combining in their operation, both the charge and spin of electrons. Using Hall Effect magnetometer, a characterization of these materials is done by determining the magnetic orientation at low temperatures. We were also interested in molecular materials spin crossover. The magnetic sensor technology provides a path to the extension of detection techniques through the use of rapid and sensitive systems. The detection of the spin crossover nanoparticles is achieved by a planar Hall Effect sensor, made from magnetic multilayers. The work is a pioneer in the field of nano magnetic detection; it opens up new perspectives in basic research and the technological development of magnetic sensors. Improvements of the device have been completed and others are under development in order to improve sensitivity and reduce noise. The optimization should provide a novel system for detecting spin transition nanoparticles at room temperature.
19

Ligas magnéticas NiFe e NiFeCo eletrodepositadas, voltadas para aplicações em micro-sensores magnéticos tipo fluxgate planar / Electrodeposited NiFe and NiFeCo films for planar fluxgate sensors

Santos, Thais Cavalheri dos 31 August 2007 (has links)
O presente trabalho trata da obtenção de ligas de NiFe de NiFeCo sob a forma de filmes finos e também no seu uso na tentativa em se construir um sensor magnético tipo fluxgate planar. A técnica de produção utilizada foi a eletrodeposição com regime galvanostático. A solução eletrolítica utilizada era constituída por sais de níquel e ferro e alguns aditivos. Para depositar os filmes de NiFe, o eletrodo auxiliar era constituído de níquel; enquanto que para depositar os filmes de NiFeCo, o eletrodo auxiliar era constituído de cobalto. Os filmes foram depositados em substratos de cobre utilizando densidades de corrente no intervalo de 4 até 28 mA/cm2, com tempos totais de 40 e 60 minutos. A caracterização morfológica foi realizada utilizando Microscopia Eletrônica de Varredura superficial e de seção lateral e para encontrarmos a composição dos elementos presentes na amostra, realizamos a Espectroscopia de Energia Dispersiva e Difração de Raios-X. Quanto à caracterização magnética foi utilizado o Magnetômetro de Amostra Vibrante e também magnetometria utilizando o Superconducting Quantum Interference Devices (este foi utilizado somente para os filmes de NiFeCo) como o elemento detector do equipamento. Os filmes de NiFe crescem com orientações cristalinas ao longo dos planos (110) e (200); as quantidades de níquel e ferro atingem valores constantes a partir da densidade de corrente de 15 mA/cm2 (embora sempre haja mais níquel que ferro); o ponto de menor coercividade magnética (58,4 A/m) também ocorre a partir dessa densidade de corrente, onde filmes com 1 ?m de espessura são conseguidos para um tempo total de 40 minutos. Nota-se uma assimetria para os campos aplicados perpendicular e paralelamente à superfície do filme. Os filmes de NiFeCo crescem com orientações ao longo dos planos (111) e (200). Embora sempre haja mais níquel (constante em 70%), as concentrações de Fe e Co se igualam apenas para uma densidade de corrente próxima de 15mA/cm2. Abaixo desse valor há mais ferro, e acima mais Co. A partir dessa densidade de corrente, novamente observa-se um mínimo no valor da coercividade magnética do material (81 A/m). A partir dessa densidade de corrente, tal grandeza teve seu valor mantido praticamente constante. Para essa densidade de corrente filmes de 6 ?m de espessura são obtidos para um tempo de 40 minutos. Uma menor assimetria magnética é observada comparada com o caso anterior. Por esses dados, acreditamos que o filmes de NiFeCo seja um melhor candidato para a confecção do sensor planar tipo fluxgate, e testes iniciais de sua fabricação também são apresentados. / This work presents the results about the fabrication and characterization of thin films of NiFe and NiFeCo alloys. The attempts to construct the planar fluxgate are also presented. Galvanostatic electrodeposition using an electrolytic solution containing Ni and Fe was used: NiSO4 (0,7 mol/l); NiCl2 (0,02 mol/l); FeSO4 (0,03 mol/l); H3BO3 (0,4 mol/l) and C7H5O3NS.2H2O (0,016 mol/l). The auxiliary electrode was made on Ni for the NiFe films, while another one made on Co was used for the NiFeCo films. Films were deposited on copper substrates using current densities form 4 up to 28 mA/cm2, and total deposition time of 40 and 60 minutes. Structural characterization was performed using Scanning Electron Microscopy (surface and cross-section); Energy Dispersive Spectroscopy, and Xray Diffraction. Magnetic characterization was performed using two methods: the Vibrating Sample Magnetometry and magnetometry using a SQUID (Superconducting Quantum Interference Devices) sensor. NiFe films grow with crystalline planes oriented along the (110) e (200) directions; the amount of each material reach constant values for current densities above 15 mA/cm2 (even though there is always more Ni). The point of minimum magnetic coercivity (58,4 A/m) also occurs for this current density, where films 1 ?m-thick are obtained for a total deposition time of 40 minutes. An asymmetry is observed for magnetic fields applied parallel and perpendicular to the surface of the films. NiFeCo films grow with crystalline planes oriented along the (111) and (200) directions; the amount of Ni remains constant (about 70%) for the whole current density range. The amount of Fe decreases with increasing current density, while the amout of Co shows the opposite behavior. They have equal values for current densities of about 15mA/cm2, where the minimum coercivity of 81A/m is achieved. For higher current densities the coercivity remains constant. For the current density of 15mA/cm2, 6 ?m-thick films are obtained for a total deposition time of 40 minutes. The magnetic asymmetry is smaller than for the case of the NiFe films. According to the obtained data, we believe that NiFeCo is a better candidate for the fabrication of planar magnetic fluxgate sensors. Initial tests for the fabrication of a prototype are also presented.
20

Identification And Localization On A Wireless Magnetic Sensor Network

Baghaee, Sajjad 01 June 2012 (has links) (PDF)
This study focused on using magnetic sensors for localization and identification of targets with a wireless sensor network (WSN). A wireless sensor network with MICAz motes was set up utilizing a centralized tree-based system. The MTS310, which is equipped with a 2-axis magnetic sensor was used as the sensor board on MICAz motes. The use of magnetic sensors in wireless sensor networks is a topic that has gained limited attention in comparison to that of other sensors. Research has generally focused on the detection of large ferromagnetic targets (e.g., cars and airplanes). Moreover, the changes in the magnetic field intensity measured by the sensor have been used to obtain simple information, such as target direction or whether or not the target has passed a certain point. This work aims at understanding the sensing limitations of magnetic sensors by considering small-scale targets moving within a 30 cm radius. Four heavy iron bars were used as test targets in this study. Target detection, identification and sequential localization were accomplished using the Minimum Euclidean Distance (MED) method. The results show the accuracy of this method for this job. Different forms of sensor sensing region discretization were considered. Target identification was done on the boundaries of sensing regions. Different gateways were selected as entrance point for identification point and the results of them were compared with each other. An online ILS system was implemented and continuous movements of the ferromagnetic objects were monitored. The undesirable factors which affect the measurements were discussed and techniques to reduce or eliminate faulty measurements are presented. A magnetic sensor orientation detector and set/reset strap have been designed and fabricated. Orthogonal Matching Pursuit (OMP) algorithm was proposed for multiple sensors multiple target case in ILS systems as a future work. This study can then be used to design energy-efficient, intelligent magnetic sensor networks

Page generated in 0.0617 seconds