Spelling suggestions: "subject:"magnetische"" "subject:"unmagnetische""
321 |
Frequency control of auto-oscillations of the magnetization in spin Hall nano-oscillatorsHache, Toni 15 April 2021 (has links)
This thesis experimentally demonstrates four approaches of frequency control of magnetic auto-oscillations in spin Hall nano-oscillators (SHNOs).
The frequency can be changed in the GHZ-range by external magnetic fields as shown in this work. This approach uses large electromagnets, which is inconvenient for future applications. The nonlinear coupling between oscillator power and frequency can be used to control the latter one by changing the applied direct current to the SHNO. The frequency can be controlled over a range of several 100 MHz as demonstrated in this thesis.
The first part of the experimental chapter demonstrates the synchronization (injection-locking) between magnetic auto-oscillations and an external microwave excitation. The additionally applied microwave current generates a modulation of the effective magnetic field, which causes the interaction with the auto-oscillation. Both synchronize over a range of several 100 MHz. In this range, the auto-oscillation frequency can be controlled by the external stimulus. An increase of power and a decrease of line width is achieved in the synchronization range. This is explained by the increased coherence of the auto-oscillations. A second approach is the synchronization of auto-oscillations to an alternating magnetic field. This field is generated by a freestanding antenna, which is positioned above the SHNO.
The second part of the experimental chapter introduces a bipolar concept of SHNOs and its experimental demonstration. In contrast to conventional SHNOs, bipolar SHNOs generate auto-oscillations for both direct current polarities and both directions of the external magnetic field. This is achieved by combining two ferromagnetic layers in an SHNO. The combination of two different ferromagnetic materials is used to switch between two frequency ranges in dependence of the direct current polarity since it defines the layer showing auto-oscillations. This approach can be used to change the frequency in the GHz-range by switching the direct current polarity. / Diese Arbeit demonstriert experimentell vier verschiedene Methoden der Frequenzkontrolle magnetischer Auto-Oszillationen in Spin Hall Nano-Oszillatoren (SHNOs).
Durch externe magnetische Felder kann die Frequenz im GHz-Bereich geändert werden, wie es in dieser Arbeit gezeigt wird. Dies erfordert jedoch große Elektromagneten, deren Nutzung für zukünftige Anwendungen der SHNOs nicht geeignet sind.
Aufgrund der nichtlinearen Kopplung zwischen Oszillatorleistung und Oszillatorfrequenz, lässt sich letztere durch den Versorgungsstrom beeinflussen. Dies ist typischerweise in einem Bereich von mehreren 100 MHz möglich, wie es an mehreren Stellen dieser Arbeit gezeigt wird. Im ersten Abschnitt des Ergebnisteils wird die Synchronisation der magnetischen Auto-Oszillationen zu einer externen Mikrowellenanregung demonstriert. Der zusätzlich eingespeiste Mikrowellenstrom erzeugt eine Modulation des effektiven Magnetfelds, was zur Wechselwirkung mit den Auto-Oszillationen führt. Diese synchronisieren über eine Frequenzdifferenz von mehreren 100 MHz. In diesem Bereich lässt sich die Frequenz der Auto-Oszillation mit der äußeren Frequenz steuern. Innerhalb des Synchronisationsbereichs wird außerdem eine Erhöhung der Leistung und eine Verringerung der Linienbreite der Auto-Oszillationen festgestellt. Dies wird mit einer Erhöhung der Kohärenz der Auto-Oszillationen erklärt. Neben der zusätzlichen Einspeisung eines Mikrowellenstroms können die Auto-Oszillationen auch zu einem magnetischen Wechselfeld synchronisieren, welches von einer frei beweglichen Antenne erzeugt wird, die über dem SHNO positioniert wird.
Im zweiten Abschnitt des Ergebnisteils wird ein bipolares Konzept eines SHNO vorgestellt und seine Funktionsfähigkeit experimentell nachgewiesen. Im Vergleich zu konventionellen SHNOs erzeugen bipolare SHNOs Auto-Oszillationen für beide Polaritäten des elektrischen Versorgungsstroms und beide Richtungen des externen Magnetfelds. Dies wird durch die Kombination zweier ferromagnetischer Lagen in einem SHNO erreicht. Die Kombination unterschiedlicher ferromagnetischer Materialien kann genutzt werden, um die Mikrowellenfrequenz in Abhängigkeit der Stromrichtung zu ändern, da diese bestimmt in welcher Lage die Auto-Oszillationen erzeugt werden können. Durch eine geeignete Materialkombination kann die Frequenz im GHz-Bereich geändert werden, wenn die Strompolarität umgekehrt wird.
|
322 |
Spin-transfer torques in MgO-based magnetic tunnel junctionsBernert, Kerstin 03 February 2014 (has links)
This thesis discusses spin-transfer torques in MgO-based magnetic tunnel junctions. The voltage-field switching phase diagrams have been experimentally determined for in-plane CoFeB/MgO/CoFeB magnetic tunnel junctions. In order to limit the effect of thermal activation, experiments have been carried out using nanosecond voltage pulses, as well as at low-temperature (4.2 K).
The bias-dependence of the two spin-torque terms (Slonczewski-like and field-like) has been determined from thermally-excited ferromagnetic resonance measurements, yielding values which are in good agreement with previous reports. Additionally, material parameters such as the effective magnetisation and the damping factor have also been extracted.
Using these values as input, the switching voltages as function of the applied magnetic field have been calculated numerically and analytically by solving the modified Landau-Lifshitz-Gilbert equation. Unlike previous studies, the field-like spin-torque has also been included. Moreover, different configurations have been considered for the magnetic anisotropy directions of the reference and free layer, respectively.:1 Introduction
2 Fundamentals
2.1 Magnetoresistance
2.1.1 Giant magnetoresistance
2.1.2 Tunnel magnetoresistance
2.2 Spin-transfer torque effect
2.2.1 Physical picture of the STT
2.2.2 In-plane and perpendicular STT
2.3 Equation of motion for the magnetisation
2.3.1 The Landau-Lifshitz-Gilbert equation
2.3.2 Extension including spin-transfer-torque (LLGS)
2.4 Applications of MR and spin-transfer torque
2.4.1 Read heads in hard disk drives
2.4.2 Spin-transfer torque magnetic random access memory
2.5 STT effects in magnetic tunnel junctions
2.5.1 Current-induced switching
2.5.2 Magnetisation precession
2.5.3 Bias-dependence of STT
2.5.4 Back-hopping
3 Experimental
3.1 Samples
3.1.1 Stack composition
3.1.2 Properties of samples used in this work
3.2 Experimental setup
3.2.1 Overview of equipment for the different measurement techniques
3.2.2 Electromagnet and Kepco power supply
3.2.3 Contacting of the sample
3.2.4 Principle specifications of equipment
3.3 Experimental techniques
3.3.1 Measurement of DC R-H and R-I loops
3.3.2 Measurement of phase diagrams: off and on-pulse
3.3.3 Thermally-excited ferromagnetic resonance
4 Results and discussion
4.1 Switching phase diagrams of MTJs
4.1.1 Theory: Calculating the phase diagram
4.1.2 Experimental phase diagrams
4.2 Thermally excited ferromagnetic resonance
4.2.1 Smoothing and fitting of raw data
4.2.2 Determination of Ms
4.2.3 Signal evolution with bias voltage
4.2.4 Analysis of peak position: perpendicular STT
4.2.5 Analysis of peak linewidth
5 Summary and outlook
A Appendix
List of figures
List of tables
Bibliography / Diese Arbeit befasst sich mit Spin-Transfer-Torque-Effekten in MgO-basierten magnetischen Tunnelstrukturen. Die Phasendiagramme als Funktion von Spannung und Magnetfeld von CoFeB/MgO/CoFeB-Tunnelstrukturen mit Magnetisierung in der Ebene wurden experimentell bestimmt. Um thermische Anregungseffekte zu limitieren, wurden die Experimente einerseits mit nanosekundenlangen Spannungspulsen und andererseits bei niedrigen Temperaturen (4.2 K) durchgeführt.
Die Spannungsabhängigkeit der beiden Spin-Torque-Parameter (in-plane und senkrechter Spin-Transfer-Torque) wurde aus Messungen der thermisch angeregten ferromagnetischen Resonanz bestimmt, wobei sich Werte ergaben, die gut mit vorangegangenen Untersuchungen übereinstimmen. Zusätzlich wurden Werte für Materialparameter wie die effektive Magnetisierung und den Dämpfungsparameter gewonnen.
Unter Verwendung der erhaltenen Werte wurden die Schaltspannungen als Funktion des angelegten Magnetfeldes analytisch und numerisch berechnet, indem die erweiterte Landau-Lifshitz-Gilbert-Gleichung gelöst wurde. Im Gegensatz zu vorangegangenen Untersuchungen wurde der senkrechte Spin-Transfer-Torque dabei mit einbezogen. Darüber hinaus wurden verschiedene Konfigurationen für die Richtung der magnetischen Anisotropie der freien und fixierten Schicht berücksichtigt.:1 Introduction
2 Fundamentals
2.1 Magnetoresistance
2.1.1 Giant magnetoresistance
2.1.2 Tunnel magnetoresistance
2.2 Spin-transfer torque effect
2.2.1 Physical picture of the STT
2.2.2 In-plane and perpendicular STT
2.3 Equation of motion for the magnetisation
2.3.1 The Landau-Lifshitz-Gilbert equation
2.3.2 Extension including spin-transfer-torque (LLGS)
2.4 Applications of MR and spin-transfer torque
2.4.1 Read heads in hard disk drives
2.4.2 Spin-transfer torque magnetic random access memory
2.5 STT effects in magnetic tunnel junctions
2.5.1 Current-induced switching
2.5.2 Magnetisation precession
2.5.3 Bias-dependence of STT
2.5.4 Back-hopping
3 Experimental
3.1 Samples
3.1.1 Stack composition
3.1.2 Properties of samples used in this work
3.2 Experimental setup
3.2.1 Overview of equipment for the different measurement techniques
3.2.2 Electromagnet and Kepco power supply
3.2.3 Contacting of the sample
3.2.4 Principle specifications of equipment
3.3 Experimental techniques
3.3.1 Measurement of DC R-H and R-I loops
3.3.2 Measurement of phase diagrams: off and on-pulse
3.3.3 Thermally-excited ferromagnetic resonance
4 Results and discussion
4.1 Switching phase diagrams of MTJs
4.1.1 Theory: Calculating the phase diagram
4.1.2 Experimental phase diagrams
4.2 Thermally excited ferromagnetic resonance
4.2.1 Smoothing and fitting of raw data
4.2.2 Determination of Ms
4.2.3 Signal evolution with bias voltage
4.2.4 Analysis of peak position: perpendicular STT
4.2.5 Analysis of peak linewidth
5 Summary and outlook
A Appendix
List of figures
List of tables
Bibliography
|
323 |
Auswirkung lokaler Ionenimplantation auf Magnetowiderstand, Anisotropie und MagnetisierungOsten, Julia 17 December 2015 (has links)
Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen der Ionenimplantation auf die Materialeigenschaften verschiedener magnetischer Probensysteme. Durch die Implantation mit Ionen kann man auf vielfältige Art und Weise die Eigenschaften von magnetischen Materialien modifizieren und maßschneidern, so zum Beispiel die Sättigungsmagnetisierung und die magnetische Anisotropie. Aus der Untersuchung von drei verschiedenen Probensystemen ergibt sich die Dreigliederung des Ergebnisteils.
Im ersten Teil der Arbeit, dem Hauptteil, wird die Strukturierung von Permalloyschichten durch Ionen und der Einfluss auf den anisotropen Magnetowiderstand (AMR) untersucht. Der AMR ist direkt abhängig von der Ausrichtung der Magnetisierung eines Materials zum angelegten Strom. Um die Magnetisierungsrichtung sichtbar zu machen wurde ein Kerrmikroskop benutzt. Dieses wurde im Rahmen dieser Arbeit technisch erweitert um gleichzeitig auch den AMR messen zu können. Damit war es erstmalig möglich den AMR und die magnetischen Domänenkonfigurationen direkt zu vergleichen. Durch eine weitere Modifikation des Kerrmikrosops ist es möglich quantitative Bilder eines kompletten Ummagnetisierungsvorganges zu messen. Es konnte gezeigt werden, dass der berechnete AMR des Bildausschnittes mit dem gemessenen übereinstimmt. Der AMR ist abhängig von der Streifenbreite, der Streifenausrichtung zum Strom, der Stärke der induzierten Anisotropie, dem angelegten Feldwinkel und der Sättigungsmagnetisierung. Im Fall von schmalen Streifen führt das zweistufige Schalten zu einem AMR-Maximum, wenn die Streifen mit der niedrigeren Sättigungsmagnetisierung geschaltet haben. Das Zusammensetzen der Streifenstruktur ermöglicht es den AMR gezielt zu manipulieren. Bei geringer induzierter Anisotropie sind verschiedene komplexe Domänen messbar, welche sich in einem asymmetrischen AMR widerspiegeln. So kann der AMR auf vielfältige Weise manipuliert und deren Abhängigkeit von den magnetischen Domänen mittels Kerrmikroskopie gemessen werden.
Im zweiten Teil wurde die Erzeugung eines Anisotropiegradienten durch Ionenimplantation in einem Speichermedium untersucht. Hierbei handelt es sich um eine Kooperation mit Peter Greene (University of California Davis) und Elke Arenholz (Lawrence Berkeley Laboratory). Nachdem die Ionenverteilung in dem Material mit TRIDYN simuliert wurde, erfolgte eine Implantation in die oberen Schichten der Co/Pd Multilagen. Dieses hat eine Veränderung der magnetischen Anisotropie zur Folge. Die Ummagnetisierungskurven sind mit dem polaren magnetooptische Kerreffekt (polaren MOKE) und Vibrationsmagnetometrie vermessen worden. Außerdem fand eine Strukturanalyse mit Röntgenreflektrometrie und Röntgendiffraktometrie statt. Die abschließende Beurteilung des Schaltverhaltens erfolgte durch die Auswertung der Ummagnetisierungskurven erster Ordnung. Es ist uns gelungen die oberen Schichten durch die Implantation weichmagnetisch zu machen. Die darunterliegenden Schichten sind noch hartmagnetisch und das Material zeigt textit{exchange spring} Verhalten. Es erfüllt somit die Voraussetzungen, um als Speichermedium genutzt zu werden. Damit konnte erfolgreich gezeigt werden, dass man mit Ionenimplantation einen Anisotropiegradienten in einem Speichermedium erzeugen kann und dadurch das gewünschte Schaltverhalten erzeugt.
Im dritten Teil, in einem Projekt mit Björn Obry (TU Kaiserslautern), geht es um die Erzeugung eines Spinwellenleiters und eines magnonischen Kristalls durch die Ionenimplantation in Permalloy. Zur Herstellung des Spinwellenleiters und des magnonischen Kristalls macht man sich die lokale Reduzierung der Sättigungsmagnetisierung durch die Implantation zu nutze. Es wurden Messungen mit dem polaren MOKE gemacht. Die Spinwellencharakterisierung ist mit dem Brillouin-Lichtstreumikroskop durchgeführt worden. Es war möglich die Ionenimplantation zur Herstellung eines magnonischen Kristalls und eines Spinwellenleiters zu nutzen.
Das Verändern von magnetischen Materialeigenschaften durch Implantation eröffnet somit verschiedene Möglichkeiten.
Mit Ionenimplantation kann man Permalloy so strukturieren, dass man den AMR gezielt manipulieren kann. Außerdem wurde Ionenimplantation genutzt um einen Anisotropiegradienten in einem Speichermedium zu erzeugen. Durch diesen Anisotropiegradient konnte das Schaltverhalten gezielt modifiziert werden. Mit Hilfe von Ionenimplantation kann man auch ein magnonisches Kristall und einen Spinwellenleiter herstellen.:Kurzfassung
Abstract
1 Einführung
2 Grundlagen
2.1 Ferromagnetismus
2.2 Magnetische Domänen
2.3 Magnetooptischer Kerr-Effekt
2.4 Anisotroper Magnetowiderstand
2.5 TRIDYN
2.6 Spinwellen in magnonischen Kristallen
2.7 Brillouin-Lichtstreuung
3 Experimentelle Details
3.1 Duale Kerrmikroskopie mit gleichzeitiger Widerstandsmessung
3.1.1 Realisierung von Kerrmikroskopie mit simultaner Widerstandsmessung
3.1.2 Erweiterung zur dualen Kerrmikroskopie
3.2 Berechnung des Magnetowiderstandes
3.3 Röntgenzirkulardichroismus (XMCD)
3.4 Vibrationsmagnetometrie (VSM)
3.5 Röntgendiffraktometrie (XRD)
3.6 Röntgenreflektometrie (XRR)
3.7 Ummagnetisierungskurven erster Ordnung (FORC)
3.8 Brillouin-Lichtstreumikroskopie (BLS)
4 Anisotroper Magnetowiderstand in Hybridproben
4.1 Herstellung magnetischer Hybridproben durch Implantation
4.2 AMR von unstrukturiertem Permalloy mit induzierter Anisotropie
4.3 Modifikation des AMR durch Strukturierung
4.3.1 Streifenstrukturen senkrecht zur Stromrichtung
4.3.2 Zusammengesetze Streifenstruktur senkrecht und parallel zur Strom-
richtung
4.3.3 Abhängigkeit des AMR von der Streifenbreite bei zusammengesetz-
ten Streifenstrukturen
4.4 Einfluss der reduzierten Sättigungsmagnetisierung auf den AMR
4.5 Einfluss der Anisotropien auf den AMR
4.6 Nutzung der AMR Berechnung zur gezielten Manipulation des Widerstandes
4.7 Abhängigkeit des AMR vom Feldwinkel
5 Erzeugung eines Anisotropiegradienten durch Ionenimplantation
5.1 Herstellung eines senkrecht zur Ebene magnetisierten Materials
5.2 Simulation der Eindringtiefe der Ionen mit TRIDYN
5.3 Messungen der Rauigkeit
5.4 Messungen des Ummagnetisierungsverhalten
5.5 Domänenbetrachtung und Schaltfeldverteilung
6 Magnetisierungsveränderung durch Ionenimplantation
6.1 Herstellung eines Spinwellenleiters und eines magnonischen Kristalls
6.2 Messungen der Sättigungsmagnetisierung
6.3 Messungen der Spinwellenfrequenz
7 Zusammenfassung
8 Anhang
Literaturverzeichnis
Veröffentlichungen
Danksagung / This thesis deals with magnetic modification of ferromagnetic films by ion implantation, such as induced changes of the magnetic anisotropy and changes in the saturation magnetization. Three different sample structures were investigated. Therefore the result section is divided into three parts.
The influence of ion induced magnetic patterning on the anisotropic magnetoresistance (AMR) is investigated in the first part. The AMR directly depends on the angle between the applied current and the magnetization of the material. To investigate this relationship a Kerr microscopy,for observing the magnetic domains was combined with resistance measurements. The measurements were performed on stripe patterned permalloy samples. This is the main part of the thesis.
The creation of an anisotropy gradient in a storage media by ion implantation is the topic of the second part. It was a collaborative project with Peter Greene (University of California Davis) and Elke Arenholz (Lawrence Berkeley Laboratory). The goal was to create a magnetic anisotropy gradient by introducing ions in the upper layer of the Co/Pd- multilayer. After TRIDYN simulations of the ion distribution, the implantation was performed and the magnetization curves were measured with polar magneto-optical Kerr effect and vibrating sample magnetometry. In addition to this, structural characterization was carried out by x-ray reflection and x-ray diffraction measurements. For the final determination of the switching behavior first order reversal curves were analyzed.
The aim of the third part was to create a spin wave guide and a magnonic crystal by local ion implantation. In this project with Björn Obry (TU Kaiserslautern) the characteristic of the ions to reduce the saturation magnetization in permalloy was used and the effect on the spin wave propagation was analyzed. Polar MOKE was performed to determine the saturation magnetization. Brillouin light scattering microscopy was used to analyze the spin wave behavior inside the material.:Kurzfassung
Abstract
1 Einführung
2 Grundlagen
2.1 Ferromagnetismus
2.2 Magnetische Domänen
2.3 Magnetooptischer Kerr-Effekt
2.4 Anisotroper Magnetowiderstand
2.5 TRIDYN
2.6 Spinwellen in magnonischen Kristallen
2.7 Brillouin-Lichtstreuung
3 Experimentelle Details
3.1 Duale Kerrmikroskopie mit gleichzeitiger Widerstandsmessung
3.1.1 Realisierung von Kerrmikroskopie mit simultaner Widerstandsmessung
3.1.2 Erweiterung zur dualen Kerrmikroskopie
3.2 Berechnung des Magnetowiderstandes
3.3 Röntgenzirkulardichroismus (XMCD)
3.4 Vibrationsmagnetometrie (VSM)
3.5 Röntgendiffraktometrie (XRD)
3.6 Röntgenreflektometrie (XRR)
3.7 Ummagnetisierungskurven erster Ordnung (FORC)
3.8 Brillouin-Lichtstreumikroskopie (BLS)
4 Anisotroper Magnetowiderstand in Hybridproben
4.1 Herstellung magnetischer Hybridproben durch Implantation
4.2 AMR von unstrukturiertem Permalloy mit induzierter Anisotropie
4.3 Modifikation des AMR durch Strukturierung
4.3.1 Streifenstrukturen senkrecht zur Stromrichtung
4.3.2 Zusammengesetze Streifenstruktur senkrecht und parallel zur Strom-
richtung
4.3.3 Abhängigkeit des AMR von der Streifenbreite bei zusammengesetz-
ten Streifenstrukturen
4.4 Einfluss der reduzierten Sättigungsmagnetisierung auf den AMR
4.5 Einfluss der Anisotropien auf den AMR
4.6 Nutzung der AMR Berechnung zur gezielten Manipulation des Widerstandes
4.7 Abhängigkeit des AMR vom Feldwinkel
5 Erzeugung eines Anisotropiegradienten durch Ionenimplantation
5.1 Herstellung eines senkrecht zur Ebene magnetisierten Materials
5.2 Simulation der Eindringtiefe der Ionen mit TRIDYN
5.3 Messungen der Rauigkeit
5.4 Messungen des Ummagnetisierungsverhalten
5.5 Domänenbetrachtung und Schaltfeldverteilung
6 Magnetisierungsveränderung durch Ionenimplantation
6.1 Herstellung eines Spinwellenleiters und eines magnonischen Kristalls
6.2 Messungen der Sättigungsmagnetisierung
6.3 Messungen der Spinwellenfrequenz
7 Zusammenfassung
8 Anhang
Literaturverzeichnis
Veröffentlichungen
Danksagung
|
324 |
Density functional study of the electronic and magnetic properties of selected transition metal complexesMartin, Claudia 29 November 2013 (has links)
Die vorliegende Promotionsarbeit “Density functional study of the electronic and magnetic properties of selected transition metal complexes” beschäftigt sich mit dem Zusammenhang zwischen strukturellen Merkmalen sowie elektronischen und magnetischen Eigenschaften von Einzelmolekül-Magneten. Im Wesentlichen konnte dabei gezeigt werden, dass die magnetischen Eigenschaften sowohl von strukturellen Merkmalen als auch von den elektronischen Eigenschaften bestimmt werden. Des Weiteren ergab sich, dass verschiedene Kenngrößen der magnetischen Eigenschaften (im speziellen der magnetische Grundzustand S sowie die magnetische Anisotropie D) miteinander korreliert sind. Dies ist im Besonderen für eine mögliche Anwendung von Einzelmolekül-Magneten im Bereich der Datenspeicherung von Bedeutung.
|
325 |
HED-TIE: A wafer-scale approach for fabricating hybrid electronic devices with trench isolated electrodes and its application in sensing devicesBanerjee, Sreetama 29 May 2019 (has links)
Die organisch-anorganische Hybridelektronik bietet verschiedene Möglichkeiten zur Entwicklung neuartiger Bauelemente, welche die Vorteile von organischen und anorganischen Halbleitern vereinen. Planare Bauelemente werden typischerweise mittels Schattenmasken-basierter Strukturierung hergestellt. Ein Grund hierfür ist die Empfindlichkeit organischer Halbleiter gegenüber Ultraviolettem Licht und Lösungsmitteln, welche in den Standard-Photolithographieprozessen eingesetzt werden. Die Schattenmasken-Strukturierung führt allerdings zu Bauelementen mit kleinsten Abmessungen im Mikrometerbereich. Für die Reduzierung der Kanalabmessungen von planaren organisch-anorganischen Hybridbauelementen unterhalb eines Mikrometers ist die Elektronenstrahllithographie die am häufigsten verwendete Technik. Aufgrund des hohen Kosten- und Zeitaufwandes ist es nicht möglich, diese Technik für Wafermaßstab-Herstellung in der industriellen Anwendung einzusetzen.
In dieser Arbeit wird eine alternative Technologie zur Herstellung von planaren Bauelementen mit isolierten Grabenelektroden und Kanalabmessungen von wenigen Hundert Nanometer bis unter 100 nm vorgestellt. Gräben kleiner als ein Mirkometer werden zunächst auf Silizium-Substraten strukturiert und anschließend mit einer isolierenden SiO2 Schicht aufgefüllt. Diese hilft dabei die gewünschten Elektrodenabstände, also die gewünschte Kanallänge, zu erreichen.
Die Flexibilität des neuen Herstellungsverfahrens ermöglicht es nicht nur verschiedenen Kanallängen und Bauelement-Geometrie, sondern auch die Verwendung verschiedener Materialien für Elektroden und organischen Kanäle. Dies wiederum ermöglicht eine Vielfalt von potentiellen Anwendungen der hybriden Bauelemente. In dieser Arbeit wurde 6,13-bis (triisopropylsilylethinyl)-Pentacen (TIPS-Pentacen) Lösung und metallfreie Phthalocyanin als organisches Material verwendet und als Elektrodenmaterial diente Gold. Die entstandenen auf TIPS-Pentacen-Lösung basierenden planaren hybriden Bauelemente wurden für potentielle Anwendungen als optische sowie magnetoresistive Sensoren getestet.:Table of Contents
Bibliografische Beschreibung 1
Chapter 1. Introduction 3
1.1 Organic-inorganic hybrid electronics 4
1.2 Inorganic semiconductors versus organic semiconductors 5
1.3 Electronic properties of a molecular layer 5
1.4 Vertical HEDs and planar HEDs 6
Chapter 2. Wafer-scale fabrication approach for planar HED-TIEs 8
2.1 Overview of nano-patterning techniques 8
(a) Electron beam lithography (EBL) 8
(b) Nanostencil lithography (NSL) 8
(c) Nanoimprint lithography (NIL) 9
2.2 Fabrication of planar organic-inorganic HED-TIEs 12
2.2.1 Trench refill approach for fabricating HED-TIEs 12
2.2.1.1 Deposition of the trench refill layer 15
2.2.1.2 Deposition of the organic channel material 16
(a) HED-TIE with thermally evaporated organic channel 16
(b) HED-TIE with solution processed organic channel 18
2.2.2 Spacer approach for fabricating HED-TIEs 21
2.2.2.1 Deposition of the isolation layer 23
2.3 Characterization techniques 26
(a) Electrical characterization 26
(b) Raman spectroscopy 26
(c) Photoluminescence spectroscopy 27
2.4 Summary and outlook 27
Chapter 3. Electrical characterization of HED-TIEs 29
3.1 Theoretical background 29
3.1.1 Space charge limited current (SCLC) conduction mechanism 29
3.2 Experimental details 32
3.3 Results and discussions 34
3.4 Summary and outlook 40
Chapter 4. Application of HED-TIEs as optical sensors 41
4.1 Photosensing properties of TIPS-pentacene based HED-TIEs 41
4.1.1 Theoretical background 41
4.1.2 Experimental details 43
4.1.3 Results and discussions 44
4.1.4 Summary and outlook 49
4.2 Photosensing properties of TIPS-pentacene based HED-TIEs with Au nanoparticles in the channel matrix 50
4.2.1 Theoretical background 50
4.2.2 Experimental details 51
4.2.3 Results and discussions 52
4.2.4 Summary and outlook 59
Chapter 5. Application of HED-TIE devices as magnetoresistive sensors 61
5.1 Theoretical background 61
5.1.1 Organic spintronics 61
5.1.2 Mechanisms of organic magnetoresistance (OMAR) 65
(a) Bipolaron model 68
(b) Electron-hole (e-h) pair model 69
(c) Exciton–charge interaction model 70
5.2. OMAR measurements on TIPS-pentacene OFETs and HED-TIEs 71
5.2.1 Experimental details 71
5.3 Results and discussions 73
5.4 Summary and outlook 79
Chapter 6. Summary and outlook 81
References 86
List of Figures 97
List of Tables 103
List of Abbreviations 104
Acknowledgements 106
List of Publications 108
List of Conference Presentations and Posters 109
Selbstständigkeitserklärung 111
Curriculum Vitae 112
|
326 |
Crystal growth and perfection of selected intermetallic and oxide compoundsSouptel, Dmitri 21 January 2005 (has links)
The aim of the present work is to clarify the interplay between the complex technological chain of crystal preparation, chemical and structural perfection of grown crystals of intermetallic compounds and oxides and their physical properties. This technological chain includes detailed studies of unknown or insufficiently known phase diagrams, their correlation with growth conditions and optimisation of process parameters for obtaining single crystals with high chemical and physical perfection. The measurements of the physical properties of the grown crystals such as superconductivity, thermoelectric or dielectric properties not only show new features and properties for application of the materials obtained, but also allow conclusions of the crystal perfection. The studies are focused on the following systems: RENi2B2C borocarbides (RE=Y, Tb or Ho) displaying superconductivity, magnetic order and a strong interplay between magnetic and superconducting properties for YNi2B2C, TbNi2B2C, HoNi2B2C, respectively; CeSi2-?Ô and Ru2Si3 as examples of systems with magnetic and promising thermoelectric properties, respectively; MgB2 and LiBC to test of theoretical predictions of the new superconducting intermetallic compounds discovered in the last years; SrTiO3 and SrZrO3 oxide compounds with special dielectric and optical properties. For this wide spectrum of substances necessarily different growth techniques were applied. That is mainly the floating zone (FZ) or travelling solvent floating zone (TSFZ) techniques with optical heating. Flux techniques were used if the vapour pressure of composing elements is high such as for Mg and Li. The crucible free FZ technique is very attractive for the crystal growth of these intermetallic and oxide compounds to avoid contamination with the crucible material, if the melts have very high chemical reactivity, high melting temperatures and if a large crystal size (at least 3-5 mm) is desired for corresponding physical measurements. One special aim in the presented work is the optimisation of the preparation and growth process features with respect to crystal perfection, establishing new relationships between process parameters, crystal perfection, crystallographic structure, composition of grown crystals and the related physical properties. Optimisation of crystal growth process requires own constitutional studies of growth relevant parts of corresponding multicomponent phase diagrams. Therefore, parts of the phase diagrams were experimentally revealed by differential thermal analysis (DTA), optical metallography and EPMA and partially combined with CALPHAD calculations.
|
327 |
Casting and characterization of Fe-(Cr,Mo,Ga)-(P,C,B) soft magnetic bulk metallic glassesStoica, Mihai 27 August 2005 (has links)
The ferromagnetic bulk metallic glasses (BMGs) started to be investigated only in the last 10 years.They are difficult to cast, but their properties are uniques. The work deals with casting, mechanical and soft magnetic properties of new Fe-based BMGs. Such alloys can be cast directly in samples with various geometries and they can be use as magnetic parts in different devices.
|
328 |
Giant Magnetoresistance - eine ab-initio BeschreibungBinder, Jörg 09 July 2001 (has links)
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt. / A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail.
|
329 |
Relativistic Density Functional Treatment of Magnetic AnisotropyZhang, Hongbin 09 October 2009 (has links)
Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic
solids. That is, the physical properties of ferromagnetic materials are anisotropic,
depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied
two kinds of physical properties: surface magnetic anisotropy energy (MAE)
and anisotropic thermoelectric power due to Lifshitz transitions.
After a short introduction to the full-relativistic density functional theory in Chapter 2, the MAE of ferromagnetic thin films is studied in Chapter 3. For such systems, separation of different contributions, such as bulk
magnetocrystalline anisotropy (MCA) energy, shape anisotropy energy, and
surface/interface anisotropy energy, is crucial to gain better understanding
of experiments. By fitting our calculating results for thick slabs to a phenomenological model, reliable surface MAE could be obtained. Following
this idea, we have studied the MAE of Co slabs with different geometries,
focusing on the effects of orbital polarization correction (OPC). We found
that the surface anisotropy is mainly determined by the geometry. While
OPC gives better results of orbital moments, it overestimates the MAE.
In the second part of Chapter3, the effects of electric fields on the MAE
of L10 ferromagnetic thin films are studied. Using a simple model to simulate the electric field, our calculations are in good agreement with previous
experimental results. We predicted that for CoPt, even larger effects exist.
Moreover, we found that it is the amount of screening charge that determines
the magnetoelectric coupling effects. This gives us some clue about how to
achieve electric field control of magnetization direction.
In Chapter 4, Lifshitz transitions in L10 FePt caused by a canted magnetic field are studied. We found several Lifshitz transitions in ordered FePt
with tiny features in DOS. Using a two-band model, it is demonstrated that
at such transitions, the singular behaviour of kinetic properties is due to the
interband scattering, and the singularity itself is proportional to the derivative of the singular DOS. For FePt, such singularity will be smeared into
anomaly by chemical disorder. Using CPA, we studied the effects of energy
level broadening for the critical bands in FePt. We found that for experimentally available FePt thin films, Lifshitz transitions would induce up to a
3% increase of thermopower as the magnetization is rotated from the easy
axis to the hard axis. / Spin-Bahn-Kopplung reduziert die Symmetrie ferromagnetischer Festkörper.
Das bedeutet, dass die physikalischen Eigenschaften ferromagnetischer Stoffe
anisotrop bezüglich der Magnetisierungsrichtung sind. In dieser Dissertation
werden mittels numerischer voll-relativistischer Dichtefunktional-Rechnungen
zwei Arten physikalischer Eigenschaften untersucht: magnetische Oberflächen-Anisotropieenergie (MAE) und anisotrope Thermokraft durch Lifshitz-Übergänge.
Nach einer kurzen Einführung in die relativistische Dichtefunktional-Theorie
in Kapitel 2 wird in Kapitel 3 die MAE ferromagnetischer dünner Filme
untersucht. In diesen Systemen ist es für ein Verständnis experimenteller
Ergebnisse wichtig, verschiedene Beiträge zu separieren: Volumenanteil der
magnetokristallinen Anisotropie (MCA), Formanistropie und Oberflächen bzw.
Grenzflächenanisotropie. Durch Anpassen berechneter Daten für dicke
Schichten an ein phänomenologisches Modell konnten verlässliche Oberflächen
Anisotropien erhalten werden. In dieser Weise wurde die MAE von Co-
Schichten mit unterschiedlichen Geometrien untersucht, wobei der Einfluss
von Orbitalpolarisations-Korrekturen (OPC) im Vordergrund stand. Es wurde
gefunden, dass die Oberflächenanisotropie hauptsächlich von der Geometrie
bestimmt wird. Während OPC bessere Ergebnisse für die Orbitalmomente
liefert, wird die MAE überschätzt.
Im zweiten Teil von Kapitel 3 wird der Einfluss elektrischer Felder auf die
MAE von dünnen ferromagnetischen Filmen mit L10-Struktur untersucht.
Unter Verwendung eines einfachen Modells zur Simulation des elektrischen
Feldes liefern die Rechnungen gute Übereinstimmung mit vorliegenden experimentellen
Ergebnissen. Es wird vorhergesagt, dass für CoPt ein noch
größerer Effekt existiert. Weiterhin wurde gefunden, dass die magnetoelektrische
Kopplung von der Größe der Abschirmladung bestimmt wird.
Dies ist eine wichtige Einsicht, um die Magnetisierungsrichtung durch ein
elektrisches Feld kontrollieren zu können.
In Kapitel 4 werden Lifshitz-Übergänge untersucht, die ein gekantetes
Magnetfeld hervorruft. Es wurden mehrere Lifshitz-Übergänge in geordnetem
FePt gefunden, welche kleine Anomalien in der Zustandsdichte hervorrufen.
Mit Hilfe eines Zweiband-Modells wird gezeigt, dass an solchen
Übergängen das singuläre Verhalten kinetischer Eigenschaften durch Interband-
Streuung verursacht wird und dass die Singularität proportional zur Ableitung
der singulären Zustandsdichte ist. In FePt wird durch chemische Unordnung
diese Singularität zu einer Anomalie verschmiert. Der Einfluss einer Verbreiterung
der Energieniveaus der kritischen Bänder in FePt wurde mittels CPA
untersucht. Es wurde gefunden, dass in experimentell verfügbaren dünnen FePt-Filmen Lifshitz-Übergänge bis zu 3% Erhöhung der Thermokraft erzeugen,
wenn die Magnetisierung von der leichten in die harte Richtung gedreht
wird.
|
330 |
New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical PropertiesBendyna, Joanna 30 October 2009 (has links)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA).
Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2.
In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure.
The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed.
Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished.
Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2].
Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2].
The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge.
The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed.
Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details.
Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized.
Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
|
Page generated in 0.0865 seconds