• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 72
  • 40
  • 19
  • 8
  • 7
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 382
  • 170
  • 68
  • 67
  • 59
  • 52
  • 48
  • 46
  • 36
  • 36
  • 34
  • 33
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Atomistic Spin Dynamics, Theory and Applications

Hellsvik, Johan January 2010 (has links)
The topic of this Thesis is magnetization dynamics on atomic length scales. A computational scheme, Atomistic Spin Dynamics, based on density functional theory, the adiabatic approximation and the atomic moment approximation is presented. Simulations are performed for chemically disordered systems, antiferromagnets and ferrimagnets and also systems with reduced dimensionality The autocorrelation function of the archetypical spin glass alloy CuMn is sampled in simulations following a quenching protocol. The aging regime can be clearly identified and the dependence of the relaxation on the damping parameter is investigated. The time evolution of pair correlation and autocorrelation functions has been studied in simulations of the dilute magnetic semiconductor GaMnAs. The dynamics reveal a substantial short ranged magnetic order even at temperatures at or above the ordering temperature. The dynamics for different concentrations of As antisites are discussed. Antiferromagnets offer opportunities for ultrafast switching, this is studied in simulations of an artificial antiferromagnet. For the right conditions, the cooperative effect of applied field torque and and the torque from the other sublattice enables very fast switching. The dynamics of bcc Fe precessing in a strong uniaxial anisotropy are investigated. It is demonstrated that the magnetization can shrink substantially due to a spin wave instability. The dynamics of a two-component model ferrimagnet at finite temperature are investigated. At temperatures where the magnetic system is close to the magnetic and angular momentum compensations points of the ferrimagnet, the relaxation in a uniaxial easy exis anisotropy resembles results in recent experiments on ferrimagnetic resonance. The different cases of uniaxial or colossal magnetic anisotropy in nanowires at different temperatures are compared. The magnon softening in a ferromagnetic monolayer is investigated, giving results that compare well with recent experiments. The effect of lattice relaxation can be treated in first principles calculations. Subsequent simulations captures the softening of magnons caused by reduced dimensionality and temperature. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 706
242

Magnetische und Elektrische Eigenschaften von Nd0.66(Sr1-yLiy)0.34MnO3 Manganiten / Magnetic and Electrical Properties of Nd0.66(Sr1-yLiy)0.34MnO3 manganites

Hamad, Nagat El-Sabaey Farag 17 December 2003 (has links)
No description available.
243

Development and application of quantitative MRI methods for assessing white matter integrity in the mouse brain

Thiessen, Jonathan 28 September 2012 (has links)
Healthy white matter in the brain and spinal cord is composed primarily of myelinated axons and glial cells. Myelinated axons transfer information between the peripheral nervous system and the central nervous system (CNS) as well as between centres within the CNS. Demyelination, a hallmark of neurodegenerative autoimmune diseases such as multiple sclerosis (MS), can cause nerve damage and degrade signal propagation. Magnetic resonance imaging (MRI) methods thought to assess myelin integrity and the structural integrity of axons are improving both the diagnosis and understanding of white matter diseases such as MS. Current methods, however, are sensitive to many different pathologies, making the interpretation of individual MRI results difficult. For this dissertation, several quantitative MRI methods were developed and compared, including single component T1 and T2 relaxometry, multicomponent T2 relaxometry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI). These methods were tested on agarose gels, fixed rat spinal cords, healthy control mice, and the cuprizone mouse model of demyelination. Quantitative MRI measurements were correlated to ultrastructural measurements of white matter to determine the influence myelin content and axonal structure have on different MRI methods. Cellular distributions measured in electron micrographs of the corpus callosum correlated strongly to several different quantitative MRI metrics. The largest Spearman correlation coefficient varied depending on cellular type: longitudinal relaxation rates (RA/T1) vs. the myelinated axon fraction ( r = 0.90/-0.90), the qMTI-derived bound pool fraction (f) vs. the myelin sheath fraction ( r = 0.93), and the DTI-derived axial diffusivity vs. the non-myelinated cell fraction (r = 0.92). Using Pearson’s correlation coefficient, f was strongly correlated to the myelin sheath fraction (r = 0.98) with a linear equation predicting myelin content (5.37f −0.25). Of the calculated MRI metrics, f was the strongest indicator of myelin content while longitudinal relaxation rates and diffusivity measurements were the strongest indicators of changes in tissue structure. Multiparametric MRI measurements of relaxation, diffusion, and magnetization transfer give a more complete picture of white matter integrity.
244

Charakterisierung mikrostruktureller Gewebeveränderungen bei der sporadischen Creutzfeldt-Jakob-Krankheit durch Korrelation von Diffusions- und Magnetisierungstransfer-Bildgebung / Characterization of microstructural tissue changes in sporadic Creutzfeldt-Jakob disease through correlation of magnetization transfer and diffusion MRI

Matros, Markus 06 July 2015 (has links)
Neuartige Kontraste in der Magnetresonanz-Bildgebung wie Diffusionswichtung (DW) oder Magnetisierungstransfer (MT) finden zunehmend Verwendung in der klinischen Diagnostik. Während bei der DW der Kontrast durch unterschiedliche Diffusionseigenschaften von Wassermolekülen in Gewebe verursacht wird, wird der MT-Kontrast durch unterschiedliche Anteile an gebundenen und freien Protonen im Gewebe beeinflusst. Der MT basiert auf einer selektiven Sättigung der an Makromolekülen gebundenen Protonen und dem anschließenden Transfer dieser Sättigung der Magnetisierung auf freie Protonen. Dieser Austausch führt zu einem Abfall der Signalsättigung von freien Protonen. Diese Methode besitzt das Potential, Rückschlüsse auf spezifische mikrostrukturelle Veränderung im Gewebe zu ziehen. In der vorliegenden Pilotstudie wurde ein neuer Parameter zur Beschreibung des MT-Kontrastes - die MT-Sättigung - auf ihr Potential untersucht,  Gewebeveränderungen in einem Teil der Basalganglien bei der sporadischen Creutzfeldt-Jakob-Erkrankung (sCJK) zu detektieren. Typische mikrostrukturelle Gewebeveränderungen bei der sCJK beinhalten die Ablagerungen pathologischer Prion-Proteine, spongiformen Umbau des Neuropils sowie astrozytäre Gliose und Nervenzellverlust. Anonymisierte klinisch-diagnostische MRT-Bilddaten (3D-FLASH, DWI) von 5 Patienten mit definitiver oder wahrscheinlicher sCJD wurden retrospektiv untersucht und mit denen altersangepasster gesunder Kontrollen verglichen. Mittels einer ROI-Analyse auf den MT-Karten wurden neben dem Caput des Ncl. caudatus, dem Putamen und dem Pulvinar auch MT-Werte in der Amygdala bestimmt. Im Gegensatz zum Pulvinar und zur Amygdala konnten mit dieser Methode im Ncl. caudatus und im Putamen Veränderungen aufgezeigt werden. Hier wurden im Vergleich zu einer gesunden Kontrollkohorte in beiden Strukturen signifikant niedrigere MT-Werte bei sCJK-Patienten gefunden. Eine Regressionsanalyse gegen die DW-MRT, dem etablierten diagnostischen Kriterium, ergab eine signifikante positive Korrelation von MT und mittlerer Diffusivität (MD), die auf einen Zusammenhang von erhöhten Diffusionsbarrieren und erhöhtem Wassergehalt schließen lässt. Diese Korrelation könnte auf mikrozystische Veränderungen im Neuropil zurückzuführen sein. Eine inverse Korrelation im Pulvinar sowohl in der erkrankten als auch in der gesunden Kohorte deutet dagegen auf inhärent strukturelle Barrieren hin, die die Diffusion dominierend einschränken. Die MT-Sättigung hat somit das Potential, als diagnostisches Kriterium bei der sCJK eingesetzt zu werden. Der Informationsgewinn kann hierdurch gesteigert werden, indem verschiedene quantitative MR-Techniken miteinander kombiniert werden.
245

Development and application of quantitative MRI methods for assessing white matter integrity in the mouse brain

Thiessen, Jonathan 28 September 2012 (has links)
Healthy white matter in the brain and spinal cord is composed primarily of myelinated axons and glial cells. Myelinated axons transfer information between the peripheral nervous system and the central nervous system (CNS) as well as between centres within the CNS. Demyelination, a hallmark of neurodegenerative autoimmune diseases such as multiple sclerosis (MS), can cause nerve damage and degrade signal propagation. Magnetic resonance imaging (MRI) methods thought to assess myelin integrity and the structural integrity of axons are improving both the diagnosis and understanding of white matter diseases such as MS. Current methods, however, are sensitive to many different pathologies, making the interpretation of individual MRI results difficult. For this dissertation, several quantitative MRI methods were developed and compared, including single component T1 and T2 relaxometry, multicomponent T2 relaxometry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI). These methods were tested on agarose gels, fixed rat spinal cords, healthy control mice, and the cuprizone mouse model of demyelination. Quantitative MRI measurements were correlated to ultrastructural measurements of white matter to determine the influence myelin content and axonal structure have on different MRI methods. Cellular distributions measured in electron micrographs of the corpus callosum correlated strongly to several different quantitative MRI metrics. The largest Spearman correlation coefficient varied depending on cellular type: longitudinal relaxation rates (RA/T1) vs. the myelinated axon fraction ( r = 0.90/-0.90), the qMTI-derived bound pool fraction (f) vs. the myelin sheath fraction ( r = 0.93), and the DTI-derived axial diffusivity vs. the non-myelinated cell fraction (r = 0.92). Using Pearson’s correlation coefficient, f was strongly correlated to the myelin sheath fraction (r = 0.98) with a linear equation predicting myelin content (5.37f −0.25). Of the calculated MRI metrics, f was the strongest indicator of myelin content while longitudinal relaxation rates and diffusivity measurements were the strongest indicators of changes in tissue structure. Multiparametric MRI measurements of relaxation, diffusion, and magnetization transfer give a more complete picture of white matter integrity.
246

Diffusion Tensor Imaging of Myelin Water

Avram, Alexandru Vlad January 2011 (has links)
<p>In recent years, the emergence of diffusion tensor imaging (DTI) has provided a unique means via water diffusional characteristics to investigate the white matter integrity in the human brain, and its impact on neuronal functions. However, since the characterization of white matter integrity using DTI often lacks tissue specificity, most research studies report changes in anisotropy that are not explicitly correlated with particular cellular origins. To improve the utility of DTI in translational neuroimaging, it is critical to develop DTI acquisition techniques that are quantitative and tissue specific.</p><p>There are, nevertheless, existing methods for tissue specificity. For example, myelin water images can be generated using multiple echo time (TE) or magnetization transfer techniques. These techniques can detect changes in the concentration of myelin associated markers, but not in their spatial organization. Most white matter pathologies however start with early microstructural changes in the myelin sheaths during which the tissue contents remain similar and are thus not differentiable on a conventional MR image. Thus, the ability to construct a diffusion tensor that is myelin specific can have an immediate impact on our better understanding myelin physiology and pathophysiology during brain development. </p><p>Unfortunately, the myelin water signal decays rapidly because of its short transverse relaxation time constant (T2 < 50 ms), especially in DTI experiments where the echo time (TE) can be as large as 100ms. Even in special cases where the TE is shorter, the lack of myelin selectivity in conventional DTI techniques makes assessment of myelin microstructure extremely challenging. Thus we need to develop a DTI methodology that will greatly shorten the TE and allow myelin selectivity.</p><p>To address these challenges we have developed innovative DTI acquisition methodologies that can specifically assess myelin microstructural changes in white matter. To preserve more signal from myelin water we used a stimulated echo DTI implementation. In our initial approach we integrated this sequence with a magnetization transfer preparation to achieve additional differentiating sensitization to myelin water and derive a myelin water weighted (MWW) diffusion tensor. Our results indicate that, compared to the conventional DTI, myelin water diffuses along the axis of the fiber, but has the same has larger fractional anisotropy (FA) due to significantly smaller radial diffusivity. The limited specificity of MT and high radio frequency power deposition of MT-DTI restrict its applicability in clinical studies. </p><p>To obtain increased myelin specificity we implemented a robust stimulated echo DTI sequence with segmented spiral-out readout trajectory for achieving minimal TE on clinical MRI scanners. To ensure high spatial accuracy throughout the DTI scan we further develop a methodology for inherently and dynamically correcting both motion induced phase errors and off-resonance effects due to magnetic field inhomogeneities (including eddy currents) in the reconstructed image. We the used this technique to conduct an unprecedented experiment in which we collected DTI images at multiple echo times (as short as 18ms) and characterized the dependence of anisotropy on the T2 components including myelin water. The results confirmed the anisotropy characteristics of myelin water found with our initial previous approach. </p><p>Building on this new information, we designed a MWW-DTI method based on the simultaneous acquisition of DTI images at two different echo times within clinical practical durations. It is hoped that this new DTI technique sensitized myelin microanatomy will find wide applications in monitoring healthy brain development in pediatric populations, as many developmental brain disorders start with microstructural changes in white matter.</p> / Dissertation
247

Structure-Magnetic Relationships in the Fe-Mn-P-Si System for Energy Applications

Höglin, Viktor January 2014 (has links)
Demands for new, energy-efficient appliances have greatly increased in response to our growing need for a more environmentally friendly society. Magnetic refrigeration is a technique that utilizes the magnetocaloric effect, with possible energy savings of up to 30% compared to commercial gas compression refrigerators. A material appropriate for commercial magnetocaloric devices should be both cheap and non-toxic; it should also exhibit a first-order magnetic transitions close to room temperature. The magnetic properties of Fe2P-related materials can be relevant in this context, since their magnetic properties can be finely tuned through the substitution of Fe by Mn and P by Si, As, Ge or B to meet the general requirements for a magnetocaloric device. An in-depth study has therefore here been made of the structural and magnetic properties of the (Fe,Mn)2(P,Si)-system. The phase diagram of the FeMnP1-xSix-system has been carefully re-examined. It is found to contain two single-phase regions: an orthorhombic Co2P-type structure (x &lt; 0.15) and a hexagonal Fe2P-type structure (0.24 ≤ x &lt; 0.50). Selected compounds within the Fe2P-type region of the phase diagram have been shown to exhibit potential for use in magnetic refrigeration applications. Neutron powder diffraction has here been used to determine the magnetic structures of selected crystalline compositions within the FeMnP1-xSix-system to gain a better understanding of its magnetic properties. The Fe2P-type region is mainly ferromagnetic, but an incommensurate antiferromagnetic structure has also been identified close to the Co2P/Fe2P-type phase border for x ≈ 0.25. The so-called ''virgin effect'' in the Fe2P-type region of the FeMn(P,Si) phase diagram is found to be accompanied by an irreversible structural phase transition induced by magnetostriction. This new phase is found to be preserved during successive cooling-heating cycles. Furthermore, the magnetic properties of the substituted Fe2P-type structure changes significantly for metal:non-metal ratios away from 2:1. Such deviations could well explain the apparently conflicting structure-property relationships described in earlier literature for the FeMnP1-xSix-system.
248

Fabrication and characterisation of high moment thin films for inductive write heads

Mackay, Kevin George Hamilton January 2000 (has links)
No description available.
249

Caractérisation et modélisation de l’aimant organique NIT-2Py

Gauthier, Nicolas 08 1900 (has links)
L'aimant organique NIT-2Py a été caractérisé expérimentalement et ses propriétés ont été simulées numériquement à partir de la théorie de la fonctionnelle de la densité. Le magnétisme dans ce matériau provient de la présence d'un électron non apparié sur chaque molécule qui a ainsi un moment magnétique non nul. Ceci a été confirmé par des simulations sur une molécule isolée. Les molécules de NIT-2Py cristallisent dans le groupe d'espace P21/c avec huit molécules par maille élémentaire pour former la structure cristalline Alpha étudiée dans ce document. Le moment effectif de la susceptibilité et l'entropie magnétique totale montre que ce matériau est un système de spins 1/2 avec un spin par molécule. Les mesures de chaleur spécifique ont mis en évidence la présence de deux phases magnétiques ordonnées à basse température qui sont séparées par un plateau en aimantation. Une première phase est observée à des champs magnétiques inférieurs à 2.2 T et a une température de transition de 1.32 K en champ nul. Les mesures de susceptibilité magnétique et d'aimantation ont permis d'établir que cette phase ordonnée est antiferromagnétique. Ceci est confirmé par les simulations numériques. La deuxième phase est induite par le champ magnétique avec une température de transition de 0.53 K à 6 T. L'information disponible sur cette phase est limitée et l'étude du système à l'extérieur des phases ordonnées en donne une meilleure compréhension. Un modèle de spins S=1/2 isolés et de dimères S=0 isolés reproduit bien les mesures d'aimantation et de chaleur spécifique au-dessus de 3 K. L'application d'un champ magnétique réduit l'écart d'énergie entre le singulet et le triplet du dimère jusqu'au croisement qui se produit à 6 T. La phase induite émerge précisément à ce croisement et on spécule l'existence d'un condensat de Bose-Einstein des états triplets. / The organic magnet built from NIT-2Py molecules has been characterized experimentally and its properties have been simulated using density functional theory. In this material, an unpaired electron carrying a magnetic moment on each molecule is responsible for the magnetism. This has been confirmed by numeric simulations on an isolated molecule. NIT-2Py molecules crystallize in space group P21/c with eight molecules per unit cell to form crystalline phase Alpha studied in this document. The effective moment obtained from magnetic susceptibility and the total magnetic entropy show that this material is a spin 1/2 system with one spin per molecule. Specific heat measurements have highlighted the presence of two magnetically ordered phases at low temperature, which are separated by a plateau in magnetization. A first phase is observed at magnetic field lower than 2.2 T and has a transition temperature of 1.32 K in zero field. Magnetic susceptibility and magnetization measurements have established that this ordered phase is antiferromagnetic. This is confirmed by numeric simulations. The second phase is induced by a magnetic field and has a transition temperature of 0.53 K at 6 T. Information concerning the field induced phase is limited and a study of the system above the transition temperatures helps to gain a better understanding. A model of isolated spins S=1/2 and isolated dimers S=0 reproduces nicely the specific heat and magnetization data above 3 K. The application of a magnetic field reduces the energy gap between the singlet and the triplet of the dimer and the crossover between these levels is observed at 6 T. The field induced phase emerges precisely at this crossover suggesting the occurrence of a Bose-Einstein condensation of triplets states.
250

Materials for Magnetic Recording Applications

Burkert, Till January 2005 (has links)
In the first part of this work, the influence of hydrogen on the structural and magnetic properties of Fe/V(001) superlattices was studied. The local structure of the vanadium-hydride layers was determined by extended x-ray absorption fine structure (EXAFS) measurements. The magnetic ordering in a weakly coupled Fe/V(001) superlattice was investigated using the magneto-optical Kerr effect (MOKE). The interlayer exchange coupling is weakened upon alloying with hydrogen and a phase with short-range magnetic order was observed. The second part is concerned with first-principles calculations of magnetic materials, with a focus on magnetic recording applications. The uniaxial magnetic anisotropy energy (MAE) of Fe, Co, and Ni was calculated for tetragonal and trigonal structures. Based on an analysis of the electronic states of tetragonal Fe and Co at the center of the Brillouin zone, tetragonal Fe-Co alloys were proposed as a material that combines a large uniaxial MAE with a large saturation magnetization. This was confirmed by experimental studies on (Fe,Co)/Pt superlattices. The large uniaxial MAE of L10 FePt is caused by the large spin-orbit interaction on the Pt sites in connection with a strong hybridization between Fe and Pt. Furthermore, it was shown that the uniaxial MAE can be increased by alloying the Fe sublattice with Mn. The combination of the high-moment rare-earth (RE) metals with the high-TC 3d transition metals in RE/Cr/Fe multilayers (RE = Gd, Tb, Dy) gives rise to a strong ferromagnetic effective exchange interaction between the Fe layers and the RE layer. The MAE of hcp Gd was found to have two principal contributions, namely the dipole interaction of the large localized 4f spins and the band electron magnetic anisotropy due to the spin-orbit interaction. The peculiar temperature dependence of the easy axis of magnetization was reproduced on a qualitative level.

Page generated in 0.1002 seconds