• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 3
  • 2
  • Tagged with
  • 20
  • 20
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude de la dynamique de l'aimantation dans des nanostructures magnétiques à aimantation perpendiculaire : effet du champ magnétique et du courant électrique / Domain wall dynamics in magnetic nanostructures : Effect of magnetic field and electric current

Hrabec, Ales 06 December 2011 (has links)
Pendant les deux dernières décennies, la manipulation des parois de domaines est devenuel'une des parties inamovibles de la spintronique. L'interaction entre les électrons deconduction polarisés en spin et les moments magnétiques localisés en termes demagnétorésistance géante en 1988 et en termes de couple de transfert de spin en 1996, a lancéune avalanche de travaux expérimentaux sur la dynamique de l’aimantation induite par uncourant polarisé. Malgré les recherches très intensives dans ce domaine, de nombreusesquestions fondamentales restent sans réponse. Par exemple, l'origine des paramètresphénoménologiques alpha et bêta, étant au coeur de la description de la dynamique del'aimantation, n'est pas entièrement comprise. Habituellement, dans les systèmes étudiésexpérimentalement les paramètres micromagnétiques sont fixés, de sorte qu'il est impossiblede vérifier leur rôle dans la dynamique de l'aimantation. Par exemple, un changement d’unparamètres tel que l’aimantation ou le moment angulaire, la largeur de paroi de domaine, etc,pourrait éclaircir la compréhension de la dynamique de parois induite par du champ ou decourant. Dans la première partie de mon travail que je vais décrire un alliage de Gd1-xCoxavec un gradient de composition (et donc d’aimantation). La composition de l’alliage estchoisi de façon que une interface magnétique compensée est présente dans nos couchesminces. Une telle couche mince sert de système modèle idéal avec un changement continu d’aimantation à une température constante. Ce système fait l'objet d'une étude sur la dynamiquede l'aimantation induite par le courant electrique, le champ magnétique et la lumière. Dans laseconde partie de l'ouvrage des tricouches Pt/Co/AlOx, un système déjà montré être adapté àla manipulation des parois de domaines rapide et reproductible, est étudiée. J'ai testéexpérimentalement et prouvé l'hypothèse reliant le rendement du couple de transfert de spin àle présence d’un champ magnétique transverse ayant pour origine l’effet Rashba auxinterfaces du cobalt. / Within the last two decades, domain wall manipulation became one of the undetachable partsof spintronics. The interaction between spin-polarized conduction electrons and localizedmagnetic moments in terms of giant magnetoresistance in 1988 and in terms of spin-transfertorque in 1996, launched an avalanche of experimental work on current-inducedmagnetization dynamics. Despite the very intensive research in this field, many fundamentalquestions stay unanswered. For example, the origin of the phenomenological parameters alphaand beta, being at the heart of the description of the magnetization dynamics, is not fullyunderstood. Usually, in the experimentally studied systems the micromagnetic parametersare fixed, so that it is impossible to verify their role in magnetization dynamics. For example,changing parameters like magnetization or angular momentum, domain wall width, etc.,would shed more light on the understanding of the field- or current-induced domain walldynamics process. In the first part of my work I will describe an alloy of Gd1-xCox with acomposition, i.e. magnetization, gradient. The alloy composition is chosen in a way that amagnetically compensated interface is present in our thin films. Such a thin film serves as anideal model system with a continuous change of magnetization at a constant temperature. Thissystem is the subject of a study of field- current- and light-induced magnetization dynamics.In the second part of the work, Pt/Co/AlOx trilayer, a system already shown to be suitable forfast and reproducible domain wall manipulation is studied. I experimentally tested and provedthe hypothesis connecting the spin-transfer torque efficiency with a transverse magnetic fieldhaving as origin the Rashba field at the Co interfaces.
12

Electrical transport in nanostructures of the Weyl semimetal WTe₂

Labracherie, Valentin 29 September 2021 (has links)
Recently, different studies on Weyl semimetals have shown some great potential for applications in spintronics. Indeed, spin-chiral Weyl nodes are perfect sources or sinks of the Berry curvature, which give new transport properties due to their topological nature, such as the chiral anomaly, and a large anomalous Hall response. Moreover, type-II Weyl semimetals, such as WTe2, have a specific band structure with tilted Weyl cones and overlapping electron/hole bands that can result in a perfect charge compensation and an extremely large magnetoresistance (XMR) . Yet, in WTe2 , Weyl nodes are usually located about 50 meV above the Fermi energy, a situation that questions the observation of both a large positive XMR and a negative magnetoresistance attributed to the chiral anomaly in some studies. In this work, we investigate the magneto-transport properties of WTe2 nanos- tructures obtained by different methods (mechanical exfoliation, chemical vapor transport), considering both the real electronic band structure and scattering by dis- order. Although the XMR amplitude also depends on charge mobilities, it is shown that the subquadratic response is not strongly influenced by the degree of disorder. Taking carrier densities infered from quantum oscillations into account, a three-band model explains this behavior by a large difference in hole mobilities, as confirmed by numerical simulations. At low temperatures and for small magnetic fields, an isotropic negative magneto-resistance is observed and attributed to a topological property of the band structure far away from the Weyl nodes. This new mechanism, different from the chiral anomaly, allows us to reproduce the experimental results by numerical calculations based on the real band structure of WTe2. / In den vergangenen Jahren haben verschiedene Untersuchungen von Weyl Halb- metallen gezeigt, dass sich diese sehr gut als Spintronische Geräte eignen. In der Tat sind die Spin-chiralen Weyl Quasiteilchen perfekte Quellen und Abflüsse der Berrykrümmung, was auf Grund ihrer topologischen Natur neue Transporteigen- schaften hervorruft, wie beispielsweise die chirale Anomalie und einen großen, anomalen Hall Effekt. Außerdem haben Typ II Weyl Halbmetalle wie WTe2 eine spezifische Bandstruktur mit gekippten Weylkegeln und überlappenden Elektronen-/Lochbändern, die dazu führen können, dass die Ladungsträgerkompensation ideal wird und ein sehr starker Magnetowiderstand (XMR) entsteht. Dennoch befinden sich die Weylknoten in WTe2 ca. 50 meV über dem Ferminiveau, eine Beobachtung die sowohl den starken positiven Magnetowiderstand, als auch den negativen Mag- netowiderstand, der meist mit der chiralen Anomalie in Verbindung gebracht wird, in Frage stellt. In dieser Arbeit untersuchen wir die Magnetotransporteigenschaften von WTe2 Nanostrukturen, die durch verschiedene Wachstumsarten hergestellt werden (mech- anische Exfoliation, chemische Gasphasenabscheidung), um sowohl die reale Band- struktur, als auch Streuung an Störstellen in Betracht ziehen zu können. Es wird gezeigt, dass der extrem große Magnetowiderstand nicht direkt vom Grad der Un- ordnung abhängt und dass das typisch subquadratische Verhalten im Rahmen eines Multibandmodells, was über das Zweibandmodell hinaus geht, verstanden wer- den kann und sich auch mit numerischen Simulationen bestätigt lässt. Bei tiefen Temperaturen und für kleine Magnetfelder kann ein isotropisch negativer Magne- towiderstand beobachtet werden, der der topologischen Eigenschaft der Bandstruk- tur weit weg von den Weylknoten geschuldet ist. Dieser neue Mechanismus, der sich von der chiralen Anomalie unterscheidet, erlaubt es uns die experimentellen Ergebnisse mit numerischen Berechnungen, die auf der realen Bandstruktur basieren, zu reproduzieren. / Récemment, différentes études sur les semimétaux de Weyl ont montré leur large potentiel pour des applications en spintronique. En effet, les noeuds de Weyl avec leur chiralité de spin sont des sources ou puits parfaits de la courbure de Berry, ce qui peut conduire à de nouvelles propriétés de transport, dues à la nature topologique de la structure de bande, comme l’anomalie chirale et une large réponse liée à l’effet Hall anormal dit intrinsèque. De plus, les semimétaux de Weyl de type II, comme WTe2, ont une structure de bande particulière avec des cônes de Weyl inclinés et un chevauchement des bandes de trous et d’électrons qui résulte en une forte compensation de charge et une magnétorésistance extrêmement large (XMR) associée. Cependant, dans WTe2, les noeuds de Weyl se trouvent environ 50 meV au-dessus de l’énergie de Fermi, ce qui remet en cause la possibilité d’observer à la fois une XMR positive à fort champ et une magnétorésistance négative à champ faible due à l’anomalie chirale. Dans ce travail, nous étudions les propriétés de magnéto-transport de nanostructures WTe2 obtenues par différentes méthodes (exfoliation mécanique, transport en phase vapeur), avec des degrés de désordre microscopique différents, en considérant à la fois la structure de bande réelle du matériau et les processus de diffusion liés au désordre. Il est montré que la XMR présente un comportement subquadratique, qui peut être compris dans le cadre d’un modèle multi-bandes, au-delà de deux bandes, comme confirmé par des simulations numériques. A très basse température et faible champ magnétique, une magnétorésistance négative et isotrope est observée et attribuée à une propriété topologique de la structure de bandes loin des noeuds de Weyl. Ce nouveau mécanisme, différent de celui de l’anomalie chirale, nous permet de reproduire nos résultats expérimentaux par des simulations numériques basées sur la structure de bande réelle de WTe2.
13

Nanoscale investigation of superconductivity and magnetism using neutrons and muons

Ray, Soumya Jyoti January 2012 (has links)
The work presented in this thesis was broadly focussed on the investigation of the magnetic behaviour of different superconducting materials in the form of bulk (singe crystals and pellets) and thin films (nanomagnetic devices like superconducting spin valves etc). Neutrons and muons were extensively used to probe the structural and magnetic behaviour of these systems at the nanoscale along with bulk characterisation techniques like high-sensitive magnetic property measurements, scanning probe microscopy and magneto-transport measurements etc. The nanoscale interplay of Superconductivity and Ferromagnetism was studied in the thin film structures using a combination of Polarised Neutron Reflectivity (PNR) and Low Energy Muon Spin Rotation (LE-µSR) techniques while bulk Muon Spin Rotation (µSR) technique was used for microscopic magnetic investigation in the bulk materials. In the Fe/Pb heterostructure, evidence of the Proximity Effect was observed in the form of an enhancement of the superconducting penetration depth (λs) with an increase in the ferromagnetic layer thickness (dF) in both the bilayered and the trilayered structures. The existence of an Inverted Magnetic Region was also detected at the Ferromagnet-Superconductor (F/S) interface in the normal state possibly originating from the induced spin polarisation within the Pb layer in the presence of the neighbouring Fe layer(s). The spatial size (height and width) of the Inverted Magnetic Region did not change much while cooling the sample below the superconducting transition temperature(Tc)and it also stayed unaffected by an increase in the Fe layer thickness and by a change of the applied magnetic field. In the superconducting spin valve structure containing Permalloy (Py) as ferromagnetic layer and Nb as the superconducting layer, LE-µSR measurements revealed the evidence of the decay of magnetic flux density (as a function of thickness) within the Nb layer symmetrically from the Py/Nb interfaces towards the centre of the Nb layer in the normal state. The thickness dependent magnetisation decay occurred over two characteristic length scales in the normal state that stayed of similar values in the superconducting state also. In the superconducting state, an additional contribution towards the magnetisation was found in the vicinity of the Py/Nb interfaces possibly originating from the spin polarisation of the singlet Cooper pairs in these areas. The nanoscale magnetic investigation on a highly engineered F/S/F structure (where each of the F blocks made of multiple Co/Pd layers with magnetic moments aligned perpendicular to the plane of these layers and neighbouring magnetic blocks separated by Ru layers giving rise to antiferromagnetic alignment) using LE-µSR showed an antisymmetric thickness dependent magnetic flux density profile with two characteristic length scales. In the superconducting state, the magnetic flux density profile got modified within the superconducting Nb₆₇Ti₃₃ layer near the F/S interfaces in a way similar to that of observed in the case of Py/Nb system, most likely because of the spin polarisation of the superconducting electron pairs. The vortex magnetic phase diagram of Bi₂Sr₂Ca₂Cu₃O10-δ was studied using the Muon Spin Rotation (µSR) technique to explore the effects of vortex lattice melting and rearrangements for vortex transitions and crossover as a function of magnetic field and temperatures. At low magnetic fields, the flux vortices undergo a first order melting transition from a vortex lattice to a vortex liquid state with increasing temperature while another transition also occurred with increasing field at fixed temperature to a vortex glass phase at the lowest temperatures. Evidence of a frozen liquid phase was found in the intermediate field region at low temperature in the form of a lagoon in the superconducting vortex state which is in agreement with earlier observations made in BiSCCO-2212. The magnetic behaviour of the unconventional superconductor Sr₂RuO₄ was investigated using µSR to find the evidence of normal state magnetism and the nature of the vortex state. In the normal state, a weak hysteretic magnetic signal was detected over a wide temperature and field range believed to be supporting the evidence of a chiral order parameter. The nature of the vortex lattice structure was obtained in different parts of the magnetic phase diagram and the evidence of magnetic field driven transition in the lattice structure was detected from a Triangular→Square structure while the vortex lattice stayed Triangular over the entire temperature region below Tc at low fields with a disappearance of pinning at higher temperatures.
14

Transporte em nanoestruturas: fenômenos quânticos em poços duplos e triplos / Transport in nanostructures: quantum phenomena in double and triple quantum wells

Momtaz, Zahra Sadre 22 March 2016 (has links)
Nesta tese apresentamos os estudos de magnetotransporte em poços quânticos largos,\\\\ estreitos e triplos em campos magnéticos baixos. Dependendo dos estudos desejados, me-\\\\dimos a magnetoresistência em regime linear e não linear e sob a aplicação de corrente AC, irradiação de microondas e em gradiente de temperatura ao longo das amostras. Relatamos a observação de efeitos não lineares de corrente alternada em oscilações magneto-inter-sub-bandas de poços quânticos triplos. A oscilação MIS em sistemas de poços quânticos individuais e duplos e também os efeitos não lineares devido à corrente contínua foram estudados antes nestes sistemas. Nossos resultados são explicados de acordo com um modelo generalizado baseado na parte de não equilíbrio da função de distribuição de elétrons. A magnetorresistência não local sob irradiação de microondas é também estudada nesta tese. Os resultados obtidos proporcionam evidências para uma corrente de estado de borda estabilizada por irradiação de microondas, devido às ressonâncias não lineares e foram descritas por um modelo baseado em dinâmica não linear e mapa padrão de Chirikov. Finalmente, observamos uma correlação estreita entre as oscilações de resistência e oscilações de tensão de arraste do fônon induzidas por irradiação de microondas em um sistema bidimensional de eletrons sob campo magnético perpendicular. A influência da resistividade de dissipação modificada por microondas na tensão de arraste do fônon perpendicular ao fluxo de fônons pode explicar nossas observações. Além disso, características nítidas observadas na tensão de arraste do fônon sugerem que os domínios de corrente associados a estes estados podem existir na ausência de condução DC externa. / In this thesis, we present the studies of magneto-transport in narrow , wide and triple quantum wells in low magnetic fields. Depending on the desired studies, we have measured the magneto-resistance both in linear and nonlinear regimes and under the application of AC current, microwave irradiation and temperature gradient along the samples. We have reported the observation of nonlinear effects of AC current on magneto-inter-sub-band oscillations (MIS) of triple quantum wells (TQWs). The MIS oscillations in single and double quantum well system and also nonlinear effects due to DC current have been studied before in these systems. Our results are explained according to a generalized model based on non-equilibrium part of electron distribution function. The nonlocal magneto-resistance under microwave irradiation is also studied within this thesis. The obtained results provide evidence for an edge-state current stabilized by microwave irradiation due to nonlinear resonances and have been described by a model based on the nonlinear dynamics and Chirikov standard map. Finally, we have observed the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. The influence of dissipative resistivity modified by microwave on phonon-drag voltage perpendicular to the phonon flux can explain our observations. Moreover, sharp features observed in phonon drag voltage suggest the current domains associated with these states can exist in the absence of external DC driving.
15

Magnetotransport and Remote Sensing of Microwave Reflection of Two Dimensional Electron Systems under Microwave Excitation

Ye, Tianyu 11 May 2015 (has links)
This dissertation summarizes three research projects related to microwave radiation induced electron transport properties in the GaAs/AlGaAs two dimensional electron systems. In chronological order, the projects are: a microwave reflection and electron magneto-transport correlation study, the combined microwave power and polarization dependence on microwave radiation induced magneto-resistance oscillations study, and a comparative study about the effect of circularly polarized and linearly polarized microwaves radiation on magneto-resistance oscillations induced due to the microwave. These three research projects experimentally address many interesting issues in the non-equilibrium low dimensional electron transport under microwave irradiation and provide potential applications of utilizing microwave radiation induced magneto-resistance oscillations in two dimensional electron systems as a method to detect different qualities of microwaves or terahertz waves.
16

High magnetic field studies of 2DEG in graphene on SiC and at the LaAlO³/SrTiO³ interface / Étude des gaz d’électrons bidimensionnels sous champ magnétique intense dans du graphène sur SiC et à l’interface entre les oxydes complexes LaAlO³ et SrTiO³

Yang, Ming 16 April 2018 (has links)
Cette thèse est dédiée à l'étude des propriétés de magnéto-transport des gaz d'électrons bidimensionnel, et plus spécifiquement du graphène sur carbure de silicium (G/SiC) ainsi qu’à l'interface entre les oxydes complexes LaAlO3 (LAO) et SrTiO3 (STO). Nous exploitons la génération d’un champ magnétique intense (jusqu'à 80 T) et les très basses températures (jusqu'à 40 mK) pour étudier les propriétés de transport quantique, qui sont évocatrices de la structure de bandes électroniques sous-jacente. Dans G/SiC, à la limite du régime d’effet Hall quantique, nous mesurons un plateau de Hall ultra-large quantifié à R=h/2e² couvrant un champ magnétique de plus de 70 T (de 7 T à 80 T). La résistance longitudinale est proche de zéro mais présente, de manière inattendue, de faibles oscillations périodiques avec l’inverse du champ magnétique. Sur la base d’observations microscopiques, ce gaz d’électrons 2D est modélisé par une matrice de graphène ayant une densité de porteurs de charge faible, parsemée d’ilots de taille micrométrique ayant un dopage plus important. Les simulations numériques des propriétés de transport reproduisent bien le plateau de Hall et la présence des oscillations. Au-delà du substrat de SiC qui agit comme un réservoir de charge et stabilise le facteur de remplissage à ν=2, un transfert de charge dépendant du champ magnétique entre les ilots chargés est responsable de la présence des oscillations de la magnétorésistance. Cette étude originale fournit de nouvelles perspectives pour des applications en métrologie. Les propriétés remarquables des gaz d’électrons 2D à l'interface entre les oxydes complexes LAO et STO sont aujourd'hui envisagées pour le développement de futurs dispositifs multifonctionnels. Toutefois, leurs propriétés électroniques sont encore mal connues et nécessitent des recherches plus approfondies. Dans ces systèmes, la magnétorésistance montre des oscillations de Shubnikov-de Haas (SdH) quasi-périodiques et un effet Hall linéaire jusqu'à 55 T à basse température. Nous observons une différence d’un ordre de grandeur entre la densité de porteurs extraite de la période des oscillations SdH et la pente de la résistance de Hall, impliquant la présence de nombreuses sous-bandes à l'énergie de Fermi. Les oscillations quasi-périodiques de la magnétorésistance sont bien reproduites par des simulations numériques prenant en compte l'effet Rashba à l'interface. De plus, à partir de l'évolution des oscillations SdH avec la tension de grille à très basse température (40mK), nous identifions les sous-bandes électroniques contribuant au transport, les orbitales atomiques dont elles dérivent, ainsi que leur localisation spatiale dans la profondeur de l'interface. / This thesis is devoted to the study of the magneto-transport properties of two dimensional electron gas (2DEG), and more specifically graphene on silicon carbide (G/SiC) as well as the interface between two complex oxides LaAlO3 / SrTiO3 (LAO/STO). We take advantage of very high magnetic field (up to 80 T) and very low temperature (down to 40 mK) to investigate the quantum transport properties, which are evocative of the underlying electronic band-structure. In G/SiC, close to the quantum Hall breakdown regime, we measure an ultra-broad quantum Hall plateau at R=h/2e² covering a magnetic field range of more than 70 T (from 7 T to 80 T). Accordingly, the longitudinal resistance is close to zero, but displays unexpected weak 1/B-periodic oscillations. Based on microscopic observations, this 2DEG is modeled as a low charge carrier density graphene matrix decorated by micrometers-size puddles with larger doping. Numerical simulations of the transport properties reproduce well both the broad Quantum Hall plateau and the presence of the oscillations. Besides the SiC substrate which acts as a charge reservoir and stabilizes the quantum Hall state at filling factor ν=2, a magnetic field dependent transfer of charges involving the puddles is responsible for the presence of the oscillating features. This original study provides new insights for resistance metrology purposes. The 2DEG arising at the interface between the complex oxides LAO and STO is nowadays envisioned for future multi-functional devices. Their electronic properties are still a matter of debate and require further investigations. The high field magneto-resistance of this 2DEG displays quasi-periodic Shubnikov-de Haas Oscillations (SdHO) and a linear Hall effect up to 55 T at low temperature. We observe a large discrepancy between the carrier density extracted from the period of the SdHO and the slope of the Hall resistance, which constitutes a strong evidence for the presence of many sub-bands crossing the Fermi energy. The quasi-periodic oscillations of the magneto-resistance are well reproduced by numerical simulations taking into account the strong Rashba effect at the interface. In addition, from the back-gate voltage evolution of the SdHO at sub-kelvin temperature, we identify the electronic sub-bands contributing to transport, the orbital symmetry from which they derive, as well as their spatial localization along the interface.
17

Transporte em nanoestruturas: fenômenos quânticos em poços duplos e triplos / Transport in nanostructures: quantum phenomena in double and triple quantum wells

Zahra Sadre Momtaz 22 March 2016 (has links)
Nesta tese apresentamos os estudos de magnetotransporte em poços quânticos largos,\\\\ estreitos e triplos em campos magnéticos baixos. Dependendo dos estudos desejados, me-\\\\dimos a magnetoresistência em regime linear e não linear e sob a aplicação de corrente AC, irradiação de microondas e em gradiente de temperatura ao longo das amostras. Relatamos a observação de efeitos não lineares de corrente alternada em oscilações magneto-inter-sub-bandas de poços quânticos triplos. A oscilação MIS em sistemas de poços quânticos individuais e duplos e também os efeitos não lineares devido à corrente contínua foram estudados antes nestes sistemas. Nossos resultados são explicados de acordo com um modelo generalizado baseado na parte de não equilíbrio da função de distribuição de elétrons. A magnetorresistência não local sob irradiação de microondas é também estudada nesta tese. Os resultados obtidos proporcionam evidências para uma corrente de estado de borda estabilizada por irradiação de microondas, devido às ressonâncias não lineares e foram descritas por um modelo baseado em dinâmica não linear e mapa padrão de Chirikov. Finalmente, observamos uma correlação estreita entre as oscilações de resistência e oscilações de tensão de arraste do fônon induzidas por irradiação de microondas em um sistema bidimensional de eletrons sob campo magnético perpendicular. A influência da resistividade de dissipação modificada por microondas na tensão de arraste do fônon perpendicular ao fluxo de fônons pode explicar nossas observações. Além disso, características nítidas observadas na tensão de arraste do fônon sugerem que os domínios de corrente associados a estes estados podem existir na ausência de condução DC externa. / In this thesis, we present the studies of magneto-transport in narrow , wide and triple quantum wells in low magnetic fields. Depending on the desired studies, we have measured the magneto-resistance both in linear and nonlinear regimes and under the application of AC current, microwave irradiation and temperature gradient along the samples. We have reported the observation of nonlinear effects of AC current on magneto-inter-sub-band oscillations (MIS) of triple quantum wells (TQWs). The MIS oscillations in single and double quantum well system and also nonlinear effects due to DC current have been studied before in these systems. Our results are explained according to a generalized model based on non-equilibrium part of electron distribution function. The nonlocal magneto-resistance under microwave irradiation is also studied within this thesis. The obtained results provide evidence for an edge-state current stabilized by microwave irradiation due to nonlinear resonances and have been described by a model based on the nonlinear dynamics and Chirikov standard map. Finally, we have observed the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. The influence of dissipative resistivity modified by microwave on phonon-drag voltage perpendicular to the phonon flux can explain our observations. Moreover, sharp features observed in phonon drag voltage suggest the current domains associated with these states can exist in the absence of external DC driving.
18

Magnetic and Magnetotransport Studies in Transition Metal Oxides : Role of Competing Interactions

Sow, Chanchal January 2013 (has links) (PDF)
There was a fame time for silicon in condensed matter physics, then the graphene era came and now topological insulators are gaining lot of attention, but magnetism in condensed matter physics has remained always fascinating starting from the ancient days up to now and it will remain as one of the core topic in basic or applied physics. The improvement in the modern techniques allows one to explore magnetism in different length scales as well as in different time scales. As an effect of the improvement in experimental techniques, different magnetic anomalies are unearthed. As a result theories are getting refined and the area of magnetism progresses. From the material point of view, oxides carry the most diverse nature in condensed matter starting from high temperature superconductivity (HTS), colossal magnetoresistance, metal insulator transition etc. to ferromagnetism (FM), anti-ferromagnetism (AFM), spin glass (SG) and so on. Among this list, SG and HTS are one of the least understood topics in magnetism till today. A large research community is involved in understanding the underlying physics behind these two, especially in transition metal oxides. It has drawn attention not only due to fundamental aspects but also due to various applications in day to day life. This thesis is an attempt to understand these two phenomena in transition metal oxides. As the title of this thesis suggest, it is all about magnetic and magneto-transport properties of certain transition metal oxide (crystalline) addressing the interplay between two competing order parameters to understand the underlying physics behind it from an experimental point of view. We have studied two different kinds of competing interactions: (i) the FM/AFM interplay either in bulk or at the interface of the two layers in thin films; (ii) the interplay between FM and superconductivity (SC) in superconductor (S)/ferromagnet (F) heterostructures. Basically both of these two kinds lead to non-equilibrium phenomena in these oxides. One of such competition is between FM and AFM leading to slow dynamics (glassy physics). Disorder and frustrations are the key ingredients for such slow dynamics. The spin frustration arises either due to geometry or due to competing interactions. For example, in a triangular antiferromagnet due to the triangular geometry spins gets frustrated. Now, if it prevails spin disorder as well then it satisfies both the criteria for a spin glass and hence it gives birth to glassiness. Another kind of competition is the interplay among SC and FM. It is known that SC and FM are two antagonistic quantum phenomena thus in a single material SC (singlet pairing) and FM does not co-exist. However one can realize this by making F/S heterostructures and observe the battle between these two competing order parameters. The spin polarized quasiparticle injection from F creates non equilibrium spin density inside S and thereby suppressing the order parameter of S. Also by choosing an appropriate ferromagnet the vortex motion inside S can be arrested to certain extent which can enhance the critical current density of S. Thus FM/SC interplay has become an alternative way to look at the high temperature superconductivity. This thesis is categorized into nine chapters. The summary of each chapter is as follows: Chapter: 1 contains certain concepts of magnetism and superconductivity which is useful to understand the topics and experiments described in this thesis. Chapter: 2 gives the underlying principles of the various experimental techniques used in this thesis. Chapter: 3 describes the magnetic properties of successfully synthesized five compositions of LixNi(2-x)O2 (0.67<x<0.99) which has five distinct ground states namely antiferromagnet (AF), spin glass (SG), cluster glass (CG), re-entrant spin glass (RSG) and ferromagnet (FM). The SG and CG ground state has been well described by the frequency dependent peak shift. From the power-law divergence of critical slowing down the estimated value of relaxation time indicates the presence of interacting macro spins (spin cluster) rather than individual spins in certain LixNi(2-x)O2 samples possessing CG ground state which is also supported by the Arrhenius law. The shift in the spin freezing temperature with the application of dc field obeys Almeida-Thouless line. It also exhibits memory effect which is generic to the slow dynamics. The remnant magnetization relaxation follows logarithmic decay. Interestingly, the sample having RSG ground state shows memory effect up-to 50K and behaves like a FM above that temperature. FC-ZFC M(T) curve shows a splitting at the ordering temperature. The critical analysis across the ferromagnetic-paramagnetic phase transition yields a self-consistent γ, β and δ value and the spin-spin interaction in this material follows long range mean field model. The critical exponents obey Widom scaling law: δ = 1 + γ β −1. The universality class of the scaling relations is also verified where the scaled m and scaled h collapses into two branches. Finally the magnetic phase diagram illustrates a vivid picture of the gradual evolution of ferromagnetism in LixNi(2-x)O2 through a glassy state. As a concluding remark, we think, the present study of glassy physics in magnetic insulator/semiconductor sets an example to compare them with the conventional metallic spin glass system. Chapter: 4 exhibits the results of the structural, magnetic and transport measurements to elucidate some of the most striking unusual physical responses of bulk SrRuO3. Two set of polycrystalline SrRuO3 samples with unique ordering temperature have been synthesized. In one case, we have taken the stoichiometric weight ratio of precursors that eventually resulted in Ru-deficient SrRuO3(SROD). In the other case, we have taken extra 2% wt. RuO2 deliberately to form stoichiometric SrRuO3(SRO). Both the samples are found to crystallize in orthorhombic crystal structure with Pnma space group. The low temperature magnetization is found to be well described by the Bloch T3/2 law and the magnetization near Tc is found to follow the scaling law; M~(Tc-T)β with β=0.35 and β=0.30 for SRO and SROD respectively, apparently showing the 3D Ising behaviour. This aspect will be elaborated in the next chapter. The magnetic ac susceptibility study exhibits a broad hump far below the ferromagnetic ordering temperature and the frequency dependence of this hump position exhibits the characteristics of multiple relaxations. Most strikingly, we notice a low temperature glassy magnetic behaviour clearly demonstrated by the time dependent memory effect. This is very surprising and unlikely to happen in systems, which have itinerant ferromagnetic character. However, we conjecture that slow domain growth and spin canting could be the cause for such effect. The transport study evidences a crossover from Fermi liquid (FL) to non-Fermi liquid (NFL) behaviour around 40 K and a slope change in dρ/dT vs. T plot in the vicinity of that temperature. Astonishingly, we observe two distinct dips (one around ferromagnetic ordering temperature and the other far below the ferromagnetic ordering temperature) in the temperature dependent MR response. In addition, we also observe the signature of an unusual dip in the temperature dependent coercive field towards low temperature side. The emergence of such unusual magnetic and transport response is strongly believed to be connected with hidden magnetic interactions. Our effort on neutron diffraction study has been able to trace the cause of such cryptic magnetic interaction. The findings of neutron diffraction study evidence the change in the unit cell lattice parameters around 75 K and that could be the central cause behind such anomalous low temperature magnetic responses. It also demonstrates that the octahedral tilt freezes around the FM transition and has a minimum around the low temperature glass transition temperature. Most remarkably we observe a decline in the total integrated magnetic intensity towards the low temperature side indicating the presence of antiferromagnetic like interaction in SrRuO3. Chapter: 5 resolves the ambiguity in determining the crritical exponents in SrRuO3. Most remarkably, the application of scaling law in the FC magnetization leads a systematic change in the values of critical exponent with the measuring field in SRO. The β value changes from 0 to o.44 to to 0.29 (corresponds to mean field to Ising) with the increase in the measurement field from 10 to 2500 Oe. However, the H→0 extrapolation fields β=0.5. In order to substantiate the actual nature, the critical behavior is studied across the phase transition from the M-H isotherms. The critical analysis yields a self-consistent β, γ and δ values and the spin-spin interaction follows long range mean field δ=γ β model 1+. The critical exponents also obey Widom scaling law: δ = 1 + γ β-1 The universality class of the scaling relations is verified where the scaled m and scaled h collapses into two branches. We have also found that Ru deficiency does not affect the nature of the spin-spin interaction (though ferromagnetism gets reduced). Further the directional dependence of the critical exponent reflects the isotropic nature of the magnetic interaction. In other words the spin-spin interaction found to be: i) three dimensional, ii) long range, iii) mean field type and iv) isotropic in SrRuO3. We have also found magnetocaloric effect (calculated from the M-H isotherms) that across the phase transition. The specific heat measurements find sharp jump at the ferromagnetic transition due to the magnetic contribution of the specific heat. Chapter: 6 describes the magnetism at the SrRuO3 (SRO)/LaAlO3 (LAO) interface where SRO is an itinerant ferromagnet (FM) and LAO is non-magnetic (NM) (rather diamagnetic). Most surprisingly SRO/LAO exhibits pronounced exchange bias (EB) effect realized by observing a shift in the field cooled M-H hysteresis. Further investigation results an increasing trend of the strength of the EB with the decreases in the thickness of ferromagnetic layer. This system also displays the training effect which essentially confirms that this effect is due to EB. EB arises due to the uncompensated spins at the FM/AFM interface hence the EB effect in SRO/LAO system is unconventional. However, the origin of such AFM interaction (responsible for EB effect in FM/NM system) at SRO/LAO interface is realized and explained through the temperature dependence of the EB effect. Further, we have extensively investigated EB effect in other analogous ferromagnets, FM/FM bilayers and FM/FM superlattices. We found that La0.7Sr0.3MnO3 (LSMO) grown on LAO exhibits the signature of EB. In contrast to that La0.5Sr0.5CoO3 (LSCO) does not show any signature of EB. All the bilayers (LSMO/SRO, LSMO/LSCO and LSCO/SRO) exhibit EB and have similar kind of temperature dependence. In order to gain more insight we have grown a (LSMO/SRO)8 superlattice and observed a complex magnetic behaviour. It exhibits partial inverted magnetic hysteresis. But the system shows EB effect characterized by the shift in the FC hysteresis and training effect. All these observations essentially demonstrate that the magnetic nature of various ferromagnetisms at the interfaces can be changed by choosing a proper partner (acts like adding perturbations into one of those system which lies close to the instability region). Chapter: 7 presents the magneto-transport properties of three SRO films grown on LAO (100) of thicknesses of 12, 24 and 48 nm are studied extensively. For a one to one comparison one of the sample is also grown on STO(100). The coercivity vs. temperature in SRO(48 nm)/LAO exhibits a plateau at ~40 K. The dR/dT exhibits the low temperature hump in all the samples which very much replicates with the bulk scenario that we observed in SRO. Most strikingly the 12 nm SRO sample exhibits NFL behaviour throughout the temperature range of measurement (10-150 K). Our careful investigation reveals a cross-over from FL to NFL in all SRO thin films. The cross-over temperature increases with the increase in thickness and eventually shifts towards the bulk cross-over value. It is apt to remind that in bulk SRO we have demonstrated (by employing temperature dependent neutron diffraction) that there is a presence of antiferromagnetic like interaction at low temperature giving birth to glassiness in bulk SRO. Further, an attempt is made to understand the low temperature magneto-transport anomaly by looking into the spin fluctuation through the low frequency 1/f noise measurements. It conveys a message that there are two types of magnetic ordering present in SRO giving rise to two peaks in the temperature dependence of the relative variance. Application of magnetic field suppresses both the peaks in the relative variance. This certainly indicates that the origin of such peak is caused by the spin fluctuations and thereby it is of magnetic origin. Further we have looked into the Hall effect of a structured (Hall patterned) SRO thin film and observed regular Hall effect (RHE) as well as anomalous Hall effect (AHE) in it. Most remarkably the temperature dependence of the RHE coefficient changes its sign close to the ferromagnetic transition temperature of SRO. This implies a change of the type of the carrier as the temperature is varied. Based on these results, the carrier concentration of SRO as a function of temperature is determined. Chapter: 8 is about the magnetic and magnetotransport studies on the successfully grown high quality S/F heterostructures. The oxygen content plays a vital role in superconductivity of oxide materials thus for studying FM/SC interplay in oxides we have discussed how to achieve a high quality sample (oxygen stoichiometric). We have observed a great influence of a FM in suppressing the superconductivity in YBa2Cu3O(7-δ) (YBCO) in FM/SC heterostructures. The analysis of the out of plane M-H hysteresis reveals a significant reduction of the critical fields (HC1 and HC2) of the SC (in SRO/YBCO bilayer) which might have a great significance to understand the superconductivity in a better way (from both the perspectives: theory and experiments). Most remarkably we have found 40% enhancement of the critical current density of YBCO in SRO/YBCO bilayer. We have demonstrated that in order to see the effect of spin polarizes quasiparticle (SPQP) injection into YBCO, one should not apply more than 20mA current since Joule heating contribution wins over pair breaking effect. The SPQP injection from SRO into YBCO exhibits pair breaking effect as the TC (of the SC) shift follows I2/3 law. The resistive transitions under various applied magnetic fields and the field dependence of the activation energy confirms that the vortices are in the 2D regimes (it follows power law, U0~Hα withα=0.5) in SRO/YBCO. To get a better insight into the FM/SC interplay we have looked into two of the FM/YBCO combinations (LSCO/YBCO and LSMO/YBCO). We observe that the degree of the spin polarizations of the FMs scales with the suppression of superconductivity in YBCO which means more the spin polarization more is the suppression. We have also found out that spin polarization is not the sole parameter in suppressing superconductivity in SRO/YBCO bilayers. It also depends upon the state of magnetization of the ferromagnet. Further, we observed a significant reduction (one order) of the activation energy in LSCO/YBCO compared to SRO/YBCO which clearly indicates that the vortex dynamics might depend on other aspects as well (of the FM). It also reveals the formation of decoupled pancake vortices (pure 2D regime) in LSCO/YBCO and LSMO/YBCO bilayers whereas in case of YBCO and SRO/YBCO it is of 2D coupled type. Chapter: 9 summarizes the whole work presented in this thesis. It also discusses about few research problems which one need to look at in future.
19

Nanogravure et caractérisation structurale et électronique de rubans de graphène cristallins / Nanoetching and structural and electrical characterisation of cristalline graphene nanoribbons

Nunez Eroles, Marc 09 November 2015 (has links)
Les principaux objectifs de cette thèse sont la fabrication et la caractérisation structurale à haute résolution de nanorubans de graphène à bords atomiquement lisses ainsi que leur intégration dans des composants et l'étude du transport électronique. En premier lieu, nous montrons que des nanorubans de graphène cristallins de largeur inférieure à 100 nm et avec des qualités structurales supérieures l'état de l'art peuvent être découpé par un faisceau électronique focalisé d'énergie modérée en présence d'oxygène. Les caractéristiques des rubans obtenus sont également supérieures à l'approche précédente utilisant la vapeur d'eau. Dans un deuxième temps, la structure des nanorubans est caractérisée jusqu'à l'échelle atomique par microscopie électronique en transmission corrigée des aberrations sphériques. Nous montrons que la cristallinité des nanorubans, tant en leur centre que le long des bords de découpe, est préservée. Les performances de notre approche atteignent l'état de l'art et sa reproductibilité permet de fabriquer des rubans longs de plusieurs centaines de nanomètres mais de largeur aussi fine que 16 nm. Ensuite, nous avons transposé la découpe de nanoruban suspendus à une configuration partiellement suspendue sur substrat SiO2/Si permettant de les intégrer dans des composants adaptés aux mesures de transport électronique à basse température et sous champ magnétique. Le transport électronique dans les rubans contactés de 60 x 300 nm présente un gap et des oscillations en balayage de grille arrière qui sont en accord avec un mécanisme de blocage de Coulomb dans un domaine de taille de l'ordre de la taille du ruban. Si ces résultats montrent la persistance de barrières tunnel, ses bords semblent de qualité suffisante pour ne pas induire de confinement supplémentaire. Au-delà des composants mésoscopiques, notre méthode de fabrication des rubans par gravure électronique sous oxygène ouvre des perspectives dans deux domaines en émergence. Elle est compatible avec l'ultravide et parfaitement adaptée au développement d'une technologie atomique à base de graphène. Une caractérisation de la contamination du graphène ainsi qu'une caractérisation électrique de dispositifs de graphène qui a été fait par microscopie à effet tunnel multisonde en ultra vide. Enfin, les rubans de graphène que nous produisons ont les dimensions et qualités structurales requises pour observer un comportement plasmonique du graphène dans le visible et ainsi interagir avec des structures plasmoniques métalliques. Ce couplage a été examiné en étudiant le signal Raman du graphène au voisinage de colloïdes d'or. / The main objectives of this thesis are the fabrication and high-resolution structural characterisation of graphene nanoribbons with atomically smooth edges as well as their device integration and electronic transport study. In first place, we show that crystalline graphene nanoribbons with width under 100 nm and structural properties better than the state of the art can be patterned by a focused electron beam in presence of oxygen. The structural characteristics of the ribbons are also better than the old process using water vapour. Secondly, nanoribbons structure is characterized down to the atomic scale by spherical aberration corrected transmission electron microscopy. We show that the nanoribbons crystallinity, of the centre as well as along the cut edges, is preserved. The performance of our process reaches the state of the art and its reproducibility allows to produce ribbons with length of hundreds of nanometer but as narrow as 16 nm. After that, we have transposed the suspended nanoribbon etching to a partially suspended configuration on a SiO2/Si substrate allowing the integration in devices suitable for electronic transport measurements at low temperature and under magnetic field. The electronic transport in contacted ribbons of 60x300 nm shows a gap and oscillations on backgate scanning measurements that are in agreement with a Coulomb blockade mechanism with dot sizes in the range of the ribbon surface. Even though those results show the persistence of tunnel barriers, the edges quality look good enough to avoid additional confinement. Other than mesoscopic devices, our ribbon fabrication process by electronic beam under oxygen atmosphere opens perspectives in two emergent fields. The process is ultra high vacuum compatible and perfectly adapted to the development of an atomic graphene based technology. A characterisation of contaminants of graphene samples as well as electrical characterisation of graphene devices has been performed in a multiprobe scanning tunnelling microscope in ultra high vacuum. Finally, our graphene nanoribbons have the right dimensions and structural qualities required for the observation of plasmonic behaviour of graphene in visible light and so interact with metallic plasmonic structures. This coupling has been analysed by studying the Raman signal of graphene at the close environment of gold colloids.
20

Pulsed Laser Ablated Dilute Magnetic Semiconductors and Metalic Spin Valves

Ghoshal, Sayak January 2013 (has links) (PDF)
Spintronics (spin based electronics) is a relatively new topic of research which is important both from the fundamental and technological point of view. In conventional electronics charge of the electron is manipulated and controlled to realize electronic devices. Spintronics uses charge as well as the spin degree of freedom of electrons, which is completely ignored in the charge based devices. This new device concept brings in a whole new set of device possibilities with potential advantages like higher speed, greater efficiency, non-volatility, reduced power consumption etc. The first realization of the spintronic device happened in 1989, owing to the discovery of the Giant Magneto-resistive (GMR) structure showing a large resistance change by the application of an external magnetic field. Nobel Prize in Physics is awarded for this discovery in 2007. In less than ten years, such devices moved from the lab to commercial devices, as read head sensors in hard disc drives. This new sensor led to an unprecedented yearly growth in the area l density of bits in a magnetic disc drive. Since 2005, another spintronic device known as Magnetic Tunnel Junction (MTJ) which shows a better performance replaced the existing GMR structures in the read heads. Another device which can potentially replace Si based Dynamic Random Access Memory (DRAM) is Magneto-resistive Random Access Memory (MRAM). Being magnetic it is non-volatile, which means not only it retains its memory with the power turned off but also there is no constant power required for frequent refreshing. This can save a lot of power(~ 10-15 Watts in a DRAM), which is quite significant amount for any portable device which runs under battery. Prototype of a commercial MRAM is also made during 2004-2005 by Infineon and Freescale Semiconductors. Recent development has shown switching of magnetic moment by spin-polarised currents (known as spin transfer torque), electric fields, and photonic fields. Instead of Oersted field switching in the conventional MRAM devices, spin torque effect can also be used to switch a magnetic element more efficiently. Recently Spin-Torque MRAM has gained lot of interest due to it’s less power consumption during the writing process. A continuous research effort is going on in realizing other proposed spintronic devices, such as Spin Torque Oscillator, Spin Field Effect Transistor , Race Track Memory etc. which are yet to get realized or yet to make their entry in the commercial devices. Spintronics can be divided in to two broad subfields viz.(1) Semiconductor Spintronics and (2) Metallic Spintronics. Most of the devices belong to the second class whereas the former one is rich in fundamental science and not yet cleared its path towards the world of application. Any spintronic device requires ferromagnetic material which is generally the source of spin polarized electrons. For semiconductor spintronic devices, the main obstacle is the non-existence of the ferromagnetic semiconductor above room temperature (RT). So the development in this direction is very much dependent on the material science research and discovery of novel material systems. Almost a decade back, Dilute Magnetic Semiconductors (DMS) are proposed to behaving RT ferromagnetism. As a result an intense theoretical and experimental research is being carried out since then on these materials. Still a general consensus is lacking both in terms of theory as well as experiment. There are many methodologies and thin film deposition protocols have been followed by different research groups to realize spintronic device concepts. The deposition techniques such as magnetron sputtering, molecular beam epitaxy have been found very efficient for growing metallic spintronic devices. For semiconductor spintronics especially in the area of Dilute Magnetic Semiconductors (DMS) pulsed laser ablation is also considered to be a viable technique. Even though pulsed laser ablation is a very powerful technique to prepare stoichiometric multi-component oxide films, it’s viability for the growth of metallic films and multilayer is considered to be limited. In this regard, we have used pulsed laser ablation to prepare pure and Co doped ZnO films, to examine the magnetic and magneto-transport behavior of these oxides. In addition extensive work has been carried out to optimize and reproducibly prepare metallic multilayer by Pulsed Laser Deposition to realize Spin Valve (SV) effect, which proves the viability of this technique for making metallic multilayer. This thesis deals with the study of Pulsed Laser Deposition(PLD) deposited DMSs and metallic SVs. The thesis is organized into seven chapters as described below: • Chapter:1 This chapter gives an introduction to Spintronics and the different device structures. It is followed by a brief description of the motivation of the present work. Since magnetism is at the heart of the spintronics, next we attempt to introduce some of the basic concepts in magnetism, which are related to the topics discussed in the following chapters. We discuss about various exchange interactions responsible for the long range ferromagnetic ordering below Curie temperature in different compounds. Other magnetic properties are also discussed. Then another important phenomenon called magnetic anisotropy is brought in. We discuss the origin of different types of anisotropy in materials. These anisotropies are also responsible for magnetic domain formation. Then a description of the different types of domain walls are introduced. Unlike conventional electronics, spintronics deals with spin polarized current. A short description of spin polarization from the band picture and concept of half-metal is introduced. The next part (Section-I) of this chapter gives an overview of the challenges in semiconductor spintronics. The spin injection efficiency from a ferromagnetic metal to a semiconductor is found to be poor. This problem is attributed to the conductivity mismatch at the interface. DMS materials can be potential candidates in order to solve this problem. Ferromagnetism in these proposed materials cannot be explained in terms of the standard exchange mechanisms. A model was first proposed for the hole doped system based on Zener model. A more apt model for the n-doped high dielectric materials is then proposed based on Bound Magnetic Polarons (BMP). These models for the unusual ferromagnetism are briefly discussed. Although ferromagnetism is observed by different groups, often questions are raised about the intrinsic origin of this behavior and the topic is still under debate. In this study we have tried to correlate the magnetic property with the transport property as the transport properties are generally not affected much by the presence of external impurities and probes the intrinsic property of the material. Transport and the magneto-transport in disordered materials in general are discussed. A specific model proposed for degenerate semiconductors, which is used for fitting our experimental data is explained. As the ferromagnetism in these materials are generally found to be related to the defects, different types of possible defects are described. Section-II deals with the metallic SV devices. In the history of spintronics, this is one of the most basic and most studied structures, but still having a lot of interest both fundamentally and technologically. A brief history of this discovery and a chronological progress in the device structure is discussed. Our work focuses on the metallic spin valve (SV) structures. Different types of SVs and their properties are explained. In a SV structure one of the ferromagnets (FM) is pinned using an adjuscent antiferromagnetic layer by an effect called exchange bias. A brief description of exchange bias and the effects of different parameters is given. This is followed by a discussion about the theory of GMR which deals with the spin dependent scattering at the bulk and at the interfaces, their relative contributions, effect of the band matching etc. A simple resistor model is used to explain the qualitative behavior of these SVs. The chapter is concluded with a brief summery and applications. • Chapter:2 This chapter provides a brief description of some of the experimental apparatus that are used to perform various experiments. The chapter is organized according to the general functionality of the techniques. This includes different thin film deposition techniques which are used depending on the requirements and also for comparing the properties of the samples, grown by different techniques. Structural, spectroscopic, magnetic and different microscopy techniques which are extensively used throughout, are discussed and their working principles are explained. This work also involves nano/microstructuring of devices. Mainly two structuring techniques are used viz. e-beam lithography and optical lithography by laser writer. In this section we will be discussing about these two techniques and other associated techniques like lift-off, etching etc. Effect of different parameters on the device structures are highlighted. • Chapter:3 Chapter-3 deals with the synthesis and characterization of the pure and 5% Co doped ZnO bulk samples. First a brief introduction about the ZnO crystal structure, band structure and other properties are given followed by the synthesis technique followed in our study. Synthesis is done by low temeperature in organic co-precipitation method. This liquid phase synthesis gives better homogeniety. As-grown sample is also sintered at a higher temperature. Structural study confirms the proper synthesis of the intended compound. Spectroscopic as well as magnetic study of the bulk doped sample indicates the presence of Co nano clusters in the low temperature synthesized sample, whereas after sintering indication of Co2+ is observed which reflects in the magnetic property as well. These samples are used as target material for laser ablation. • Chapter:4 Chapter-4 presents the results of the pure and Co doped ZnO thin film samples. Thin films are grown by PLD method on r-plane Sapphire substrates. Details of the growth technique and the deposition parameters are explained. Our result shows that 5% Co doped ZnO thin film is ferromagnetic in nature as expected in a DMS material, although the film is grown using a paramagnetic target. We also report that pure ZnO grown in an oxygen deficient condition giving ferromagnetic behavior. Not only that, the obtained saturation moment is much higher compared to the Co doped sample. We have demonstrated that the FM can be tuned by tuning the oxygen content and FM disappears when the film is annealed in an oxygen environment .But for the Co doped sample magnetic property could not be tuned much as Co doping stabilizes the surface states. To exclude the possibilities of the extrinsic origin we have done a detailed magneto-transport study for both doped and undoped films. For ZnO, we have shown a one to one correlation of the magnetic and magneto-transport data which further supports the fact that the obtained magnetic behavior is intrinsic. Fitting of the magnetorsistance (MR) data for the pure and Co doped ZnO samples is done using a semi-empirical formula, consisting of both positive and negative MR terms originally proposed for degenerate semiconductors .Excellent agreement of the experimental data is found with the formula. For pure ZnO sample we have extracted the mobility, carrier concentration etc .by Hall measurement. The fabrication steps of Hall bar sample which involves optical lithography and ion beam etching are discussed. 3D e-e interaction induced transport mechanism is found to be dominant in case of oxygen deficient pure ZnO. • Chapter:5 Chapter-5 demonstrates the tuning of band gap of ZnO by alloying with MgO. By changing the ZnO:MgO ratio in PLD grown films, we could tune the band gap over a wide range. Composition alanalysis is done by Rutherford Back-Scattering. Structural and spectroscopic studies are carried out, which shows tuning of band gap upon alloying with MgO. We could tune ZnO band gap from 3.3eV to 3.92eV by30% MgO alloying, while retaining the Wurtzite crystal structure. • Chapter:6 Chapter-6 demonstrates the metallic Pseudo Spin Valve (PSV) structures grown by sputtering and by PLD. Main focus of this chapter is to show that, PLD can be aviable technique for making metallic PSV and Spin Valve (SV) structures. This is almost an unexplored technique for growing metallic thin film SVs, as it is evident in the literature. NiFe and Co are used as the soft and hard FM layers respectively, Au and Cu are used as the spacer layer. FeMn is used for pinning the Co layer in case of the SV structures. The first section describes the properties of these materials and then substrate preparation, deposition parameters etc. are explained in details. Properties of sputter deposited PSV structures are also described. Thickness variation of different layers, double PSV structure and angular variation of the MR properties are presented. Generally two measurement geometries are followed for the SV measurements viz.(1) Current In Plane (CIP) and (2) Current Perpendicular to Plane(CPP). We have carried out MR studies in both the measurement geometries. Measurement in CPP geometry is much more involved than CIP and need structuring with multiple lithography steps. CPP measurement geometry scheme and the process steps are discussed. For this measurement a special ac bridge technique is followed which is also discussed. In the next part we have demonstrated PSV and SV structures, grown, using PLD in an Ultra High Vacuum (UHV) system. Not only that, we have obtained a CIPMR as high as 3.3%. PLD is generally thought to be a technique for oxide deposition and metallic multilayers are not deposited due to particulate formation, high enegy of the adatom species which can lead to inter-mixing at the interface etc. But in this study we have shown that by properly tuning the deposition parameters, it is possible to grow SVs using PLD. We have found the roughness of the PLD grown films are much lower compared to the sputtered films. For top SV structures we have obtained exchange bias even in the absence of applied field during deposition. This effect is observed by performing magnetic and magneto-resistance measurements. Effect of different layer thicknesses, field annealing etc. are discussed. Two different spacer layers are used and their properties are compared. We have found that the interface engineered structures are giving highest MR among the different samples. Then a conclusion of our study is presented followed by a discussion on the difficulties and challenges faced for optimizing the PLD grown SVs. • Chapter:7 Finally, in Chapter-7, various results are summarized and a broad outlook is given. Perspectives for the continuation of the present work is also given.

Page generated in 0.1071 seconds