• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude théorique des propriétés structurales et électroniques de l'alliage GaAsN

Madini, Nassima January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Synthèse, caractérisation physico-chimique et propriétés de transport de composés de type Mo3Sb7 / Synthesis, structural and chemical characterizations and transport properties of Mo3Sb7 based compounds

Candolfi, Christophe 06 October 2008 (has links)
Les préoccupations environnementales actuelles ont conduit à un regain d’intérêt pour la conversion d'énergie par effets thermoélectriques au cours de ces 20 dernières années. Le challenge lié à cette technologie consiste à découvrir des matériaux qui possèdent à la fois une faible conductivité thermique, une forte conductivité électrique et un fort pouvoir thermoélectrique. Les travaux présentés dans ce mémoire se sont orientés vers l'étude de phases cristallines complexes à base de Mo3Sb7. Contrôler finement les propriétés électriques et thermiques de ces matériaux par le biais de substitutions appropriées et relier les propriétés physiques aux propriétés structurales et électroniques ont été au coeur de ces travaux de recherche. Des résultats significatifs ont ainsi pu être obtenus tant au niveau de la synthèse et de la caractérisation physico-chimique qu'au niveau des propriétés magnétiques et de transport. En particulier, nous avons pu mettre en évidence les propriétés exotiques du composé Mo3Sb7 dont la compréhension s'est révélée indispensable pour l'étude des propriétés de transport des matériaux substitués ternaires et quaternaires. Les différentes possibilités de substitution ont alors permis d'améliorer de façon substantielle les performances thermoélectriques du composé Mo3Sb7 et ont, de ce fait, conduit à la découverte de nouveaux matériaux surpassant les meilleurs matériaux connus à ce jour (Si-Ge) et utilisés sur la gamme 900 - 1200 K dans des applications en génération d'électricité / Due to current environmental concerns, a resurgence of interest in thermoelectricity have been witnessed by the last 20 years. The challenge raised by this technology lies in identifying materials that display low thermal conductivity as well as both high electrical conductivity and thermopower. The work presented in this manuscript deals with a thorough study on molybdenum-antimony based complex crystalline structure. To finely control the thermal and electrical properties of these compounds through judicious substitutions and to link up physical and structural properties were at the heart of this in-depth study. Not only did we obtain outstanding results regarding the synthesis and both the chemical and structural characterizations but we also discovered intriguing magnetic and transport properties. Particularly, we emphasized the exotic properties exhibited by the binary Mo3Sb7 compound whose a deep understanding were essential to study the transport properties of the ternary and quaternary alloys. The different substitutions we have considered were found to substantially improve the thermoelectric properties of the Mo3Sb7 compound and thus, led to the synthesis of new prospective thermoelectric materials that surpass the best compounds discovered up-to-now (Si-Ge) and used in power generation applications in the 900 – 1200 K temperature range
3

Matériaux céramiques thermoélectriques pour la production d'électricité propre

Barreteau, Céline 26 September 2013 (has links) (PDF)
Ce travail de thèse porte sur l'élaboration et la caractérisation des propriétés physiques et chimiques d'une nouvelle famille de composés thermoélectriques, et plus particulièrement le composé BiCuSeO. Les composés de cette famille, dite 1111, présentent une structure en couche de type ZrCuSiAs. L'une des particularités de cette structure est la nature distincte des couches qui la composent, la couche Bi2O2 étant décrite comme isolante tandis que la couche Cu2Se2 est appelée couche conductrice. L'étude approfondie du composé BiCuSeO montre qu'en dépit d'un facteur de puissance (S²σ) relativement modéré, ce composé est un matériau thermoélectrique prometteur, notamment à haute température. En effet, BiCuSeO présente une conductivité thermique remarquablement faible, qui permet d'atteindre des facteurs de mérite relativement élevés. De plus, BiCuSeO présente de nombreuses voies d'améliorations possibles. L'une d'elle concerne l'étude d'un dopage aliovalent sur le site du bismuth. L'analyse des résultats a montré que l'insertion d'un élément divalent permet d'optimiser la concentration des porteurs de charges, entrainant ainsi une forte augmentation du facteur de mérite du composé. Une autre voie possible d'exploration est l'étude de l'influence de l'ion chalcogène, au travers notamment de la substitution du sélénium par le tellure, avec l'obtention d'une solution solide complète BiCuSe(1-x)Te(x)O. L'étude des propriétés électriques des composés de cette série a permis de mettre en évidence la présence d'une transition métal - semi-conducteur - métal pour les fractions de tellure inférieures à 0.5. Ainsi, bien que l'influence du tellure sur le facteur de puissance soit relativement limitée en raison de cette anomalie, des résultats intéressants ont été obtenus pour les fractions de tellure élevées. Par ailleurs, des problématiques autour d'une méthode de synthèse alternative du matériau ainsi que sa stabilité sous air sont également abordées dans ce travail.
4

Synthèse et caractérisation de matériaux oxydes et oxylfures pour applications thermoélectriques. / Synthesis and characterization of oxides and sulfides materials for thermoelectric applications

Labegorre, Jean baptiste 18 December 2018 (has links)
Le développement de nouveaux matériaux thermoélectriques disposant de bonnes performances et d’un coût contenu est un prérequis nécessaire pour permettre à cette technologie de se démocratiser et de participer activement à la transition énergétique. Les travaux présentés dans cette thèse portent ainsi sur la synthèse et la caractérisation structurale et physico-chimique de composés oxydes, oxysulfures et sulfures peu onéreux afin d’en étudier les propriétés thermoélectriques.La première étude porte sur l’influence des faibles teneurs en indium sur la structure et les propriétés de l’oxyde de zinc. La caractérisation des échantillons par microscopie électronique en transmission met en évidence que la solubilité de l’indium dans le ZnO est inférieure à 0,5 at%. Les défauts bidimensionnels formés dès les faibles concentrations d’indium diminuent fortement la résistivité électrique et la conductivité thermique du matériau. En parallèle de ce travail, notre intérêt s’est porté les performances thermoélectriques de l’oxysulfure BiCuOS au travers d’une substitution au Pb sur le site du Bi. La substitution aliovalente permet une diminution de la résistivité électrique du matériau. Cependant, celle-ci demeure trop élevée en raison d’une faible solubilité du cation divalent dans la phase BiCuOS. Les deux derniers chapitres sont dédiés à l’étude de composés sulfures. Lors de ces travaux, la phase minérale naturelle kiddcreekite (Cu6SnWS8) est synthétisée pour la toute première fois en laboratoire. Le cheminement suivi pour accroître la pureté du produit obtenu est détaillé tandis que les performances thermoélectriques du matériau sont évaluées. Enfin, notre attention s’est portée sur les composés MnBi4S7 et FeBi4S7 dont la structure cristalline semble compatible avec l’obtention d’une faible conductivité thermique de réseau. Les mesures des propriétés de transport électrique et thermique sont corrélées à la structure électronique et aux propriétés vibrationnelles calculées pour les deux phases. Le composé MnBi4S7 apparait ainsi comme un semiconducteur de type-n prometteur pour les applications thermoélectriques. / The development of new thermoelectric materials with good performance and low cost is necessary to make this technology more accessible and thus achieve a significant environmental impact. The work presented in this thesis deals with the synthesis and the structural and physicochemical characterisation of inexpensive oxides, oxysulfides and sulfides compounds in order to study their thermoelectric properties.The first study investigates the influence of low indium contents on the structure and properties of zinc oxide. The characterization of the samples by transmission electron microscopy shows that the solubility of indium in ZnO is less than 0.5 at%. The bidimensional defects formed from low concentrations of indium greatly reduce the electrical resistivity and the thermal conductivity of the material. In parallel with this work, our interest focused on the thermoelectric performances of the oxysulfide BiCuOS through a substitution of Pb at the Bi site. The aliovalent substitution allows a decrease in the electrical resistivity of the material. However, the later remains too high due to a low solubility of the divalent cation in the BiCuOS phase. The last two chapters are dedicated to the study of sulfides compounds. During this work, the natural kiddcreekite mineral phase (Cu6SnWS8) is synthesized for the first time in a laboratory. The successive steps followed to increase the purity of the product is described while the thermoelectric performance of the material is evaluated. Finally, our attention focused on the compounds MnBi4S7 and FeBi4S7 whose crystalline structure seems compatible with a low lattice thermal conductivity. The measured electrical and thermal transport properties are correlated with the electronic structure and the vibrational properties calculated for the two phases. The compound MnBi4S7 thus appears as a promising n-type semiconductor for thermoelectric applications.
5

Matériaux céramiques thermoélectriques pour la production d’électricité propre / Ceramics thermoelectrics materials for “green” power generation

Barreteau, Céline 26 September 2013 (has links)
Ce travail de thèse porte sur l’élaboration et la caractérisation des propriétés physiques et chimiques d’une nouvelle famille de composés thermoélectriques, et plus particulièrement le composé BiCuSeO. Les composés de cette famille, dite 1111, présentent une structure en couche de type ZrCuSiAs. L’une des particularités de cette structure est la nature distincte des couches qui la composent, la couche Bi2O2 étant décrite comme isolante tandis que la couche Cu2Se2 est appelée couche conductrice. L’étude approfondie du composé BiCuSeO montre qu’en dépit d’un facteur de puissance (S²σ) relativement modéré, ce composé est un matériau thermoélectrique prometteur, notamment à haute température. En effet, BiCuSeO présente une conductivité thermique remarquablement faible, qui permet d’atteindre des facteurs de mérite relativement élevés. De plus, BiCuSeO présente de nombreuses voies d’améliorations possibles. L’une d’elle concerne l’étude d’un dopage aliovalent sur le site du bismuth. L’analyse des résultats a montré que l’insertion d’un élément divalent permet d’optimiser la concentration des porteurs de charges, entrainant ainsi une forte augmentation du facteur de mérite du composé. Une autre voie possible d’exploration est l’étude de l’influence de l’ion chalcogène, au travers notamment de la substitution du sélénium par le tellure, avec l’obtention d’une solution solide complète BiCuSe(1-x)Te(x)O. L’étude des propriétés électriques des composés de cette série a permis de mettre en évidence la présence d’une transition métal – semi-conducteur – métal pour les fractions de tellure inférieures à 0.5. Ainsi, bien que l’influence du tellure sur le facteur de puissance soit relativement limitée en raison de cette anomalie, des résultats intéressants ont été obtenus pour les fractions de tellure élevées. Par ailleurs, des problématiques autour d’une méthode de synthèse alternative du matériau ainsi que sa stabilité sous air sont également abordées dans ce travail. / This thesis addresses the issues of the elaboration and the characterization of the chemical and physical properties of a new family of thermoelectric materials, the oxychalcogenides with the general formula BiCuSeO. This compound, called 1111, cristallises in the ZrCuSiAs structure-type. One feature of this structure lies in the fact that the layers are considered as electronically distinct: the Bi2O2 layers are described as the insulating layers whereas the chalcogenide layers Cu2Se2 are presented as the conductive ones. The study of BiCuSeO exhibits that in spite of a relatively moderate power factor (S²σ), this compound is very promising as possible thermoelectric material, especially at high temperature. Indeed, BiCuSeO shows a remarkably low thermal conductivity, which can achieve relatively high figures of merit. In addition, BiCuSeO offers many ways for improvement. One of them concerns the study of aliovalent doping on the bismuth site. The results showed that the insertion of a divalent element optimizes the charge carriers concentration, leading to a sharp increase in the figure of merit of the compound. Another possible way of exploration lies the study of the influence of the chalcogen ion, notably through the substitution of selenium and tellurium, with a complete solid-solution BiCuSe(1-x)Te(x)O. The study of the electrical properties of this solid solution has highlighted the presence of a metal - semiconductor - metal transition for tellurium fractions below 0.5. Thus, although the influence of tellurium on the power factor is relatively limited due to this anomaly, interesting results were obtained for the high tellurium fractions. In addition, issues around an alternative method of synthesis of the material and its stability in air are also discussed in this work.
6

Développement, caractérisation et modélisation d'interfaces pour cellules solaires à haut rendement à base d'hétérojonctions de silicium

Varache, Renaud 20 November 2012 (has links) (PDF)
L'interface entre le silicium amorphe (a-Si:H) et le silicium cristallin (c-Si) est un constituent clés de cellules solaires à haut rendement reposant sur des procédés à basse température. Trois propriétés de l'interface déterminent le rendement des cellules solaires à hétérojonction de silicium: les décalages de bandes entre a-Si:H et c-Si, les défauts d'interface et la courbure de bande dans c-Si. Ces trois aspects sont traités dans ces travaux de thèse.Dans un premier un temps, un calcul analytique de la courbure de bande dans c-Si est développé. Il repose sur l'approximation d'une densité d'état (DE) constante dans la bande interdite de a-Si:H. L'influence des principaux paramètres de la structure sur la courbure de bande est étudiée : décalage de bande, densité d'état dans a-Si:H, défaut d'interface, etc. La présence d'un effet de confinement quantique est discutée. Grâce à une comparaison entre ces calculs et des mesures de conductance planaire en fonction de la température sur des structures (p)a-Si:H/(n)c-Si et (n)a-Si:H/(p)c-Si, les décalages de bande de valence et de conduction ont pu être estimés à 0.36 eV et 0.15 eV respectivement. En outre, il est montré que le décalage de la bande de valence est indépendant de la température, alors que le décalage de la bande de conduction suit les évolutions des bandes interdites de c-Si et a-Si:H. Ces mesures tendent à prouver que le 'branch point' dans a-Si:H est indépendant du dopage.Ensuite, les calculs analytiques sont approfondis pour prendre en compte différents aspects de la structure complète incorporée dans les cellules : contact avec un oxyde transparent conducteur, présence d'une couche de a-Si:H non-dopée à l'interface. A l'aide de simulations numériques et à la lumière de mesures de conductance planaire conjuguées à des mesures de la qualité de passivation de l'interface, des pistes pour optimiser les cellules à hétérojonction sont commentées. En particulier, il est montré qu'un optimum doit être trouvé entre une bonne passivation et une courbure de bande suffisante. Ceci peut être accompli par un réglage fin des propriétés de la couche tampon (épaisseur, dopage), du contact (travail de sortie élevé) et de l'émetteur (p)a-Si:H (densité de défauts et épaisseur). En particulier, un émetteur avec une DE importante conduit paradoxalement à de meilleures performances.Enfin, un nouveau type d'interface a été développé. La surface de c-Si a été oxydée volontairement dans de l'eau pure dé-ionisée à 80 °C avant le dépôt de (p)a-Si:H afin d'obtenir une structure (p)a-Si:H/SiO2/(n)c-Si. A l'aide d'un modèle de courant par effet tunnel implémenté dans le logiciel de simulation numérique AFORS-HET, l'effet d'une couche à grande bande interdite (comme c'est le cas pour SiO2) sur les performances de cellules est étudié : le facteur de forme et le courant de court-circuit sont extrêmement réduits. En revanche, une couche de SiO2 n'a que peu d'impact sur les propriétés optiques de la structure. Expérimentalement, les échantillons réalisés montrent une qualité de passivation à mi-chemin entre le cas sans couche tampon et le cas avec (i)a-Si:H : ceci est expliqué par la présence d'une charge fixe négative dans l'oxyde. La courbure de bande dans c-Si est moins affectée par la présence d'une couche d'oxyde que d'une couche de (i)a-Si:H. Les cellules solaires réalisées démontrent que le concept a le potentiel d'aboutir à de hauts rendements : sur des structures non-optimisées, une tension de court-circuit supérieure à 650 mV a été démontrée, alors que l'oxyde ne semble pas limiter le transport de charge.
7

Etude de l'interface graphène - SiC(000-1) (face carbone) par microscopie à effet tunnel et simulations numériques ab initio

Hiebel, Fanny 13 December 2011 (has links) (PDF)
Le graphène est un cristal bidimensionnel composé d'atomes de carbone arrangés sur un réseau en nids d'abeille. Ce matériau présente des propriétés électroniques intéressantes tant au niveau fondamental qu'en vue d'applications avec notamment une structure de bande exotique en " cône de Dirac " et de grandes mobilités de porteurs. Sa fabrication par graphitisation du SiC est particulièrement adaptée aux applications électroniques. Nous avons étudié ce système par microscopie à effet tunnel (STM) et simulations numériques ab initio avec comme objectif la caractérisation au niveau atomique de l'interface graphène - SiC(000-1) (face carbone) et l'étude de l'impact du substrat sur la structure électronique du graphène. Après un chapitre introductif à la thématique du graphène, suivi d'un chapitre présentant les deux techniques utilisées au cours de ce travail, nous présentons nos échantillons faiblement graphitisés obtenus sous ultra-vide. Nous avons identifié deux types d'interfaces, les reconstructions natives de la surface du SiC(000-1) appelées (2x2)C et (3x3), sur lesquelles reposent les ilots monoplan de graphène, avec un fort désordre rotationnel donnant lieu à des figures de moiré sur les images STM. Nous montrons par imagerie STM et spectroscopie tunnel que l'interaction graphène/(3x3) est très faible. Nous étudions ensuite le cas d'interaction plus forte graphène/(2x2) successivement du point de vue des états du graphène et des états de la reconstruction, dans l'espace direct et réciproque, de façon expérimentale et théorique. Enfin, nous considérons l'effet de défauts observés par STM à l'interface des ilots sur (2x2), modélisés par des adatomes d'hydrogène, sur le dopage et la structure de bande électronique du graphène.
8

Development, characterization and modeling of interfaces for high efficiency silicon heterojunction solar cells / Développement, caractérisation et modélisation d’interfaces pour cellules solaires à haut rendement à base d’hétérojonctions de silicium

Varache, Renaud 20 November 2012 (has links)
L’interface entre le silicium amorphe (a-Si:H) et le silicium cristallin (c-Si) est un constituent clés de cellules solaires à haut rendement reposant sur des procédés à basse température. Trois propriétés de l’interface déterminent le rendement des cellules solaires à hétérojonction de silicium: les décalages de bandes entre a-Si:H et c-Si, les défauts d’interface et la courbure de bande dans c-Si. Ces trois aspects sont traités dans ces travaux de thèse.Dans un premier un temps, un calcul analytique de la courbure de bande dans c-Si est développé. Il repose sur l’approximation d’une densité d’état (DE) constante dans la bande interdite de a-Si:H. L’influence des principaux paramètres de la structure sur la courbure de bande est étudiée : décalage de bande, densité d’état dans a-Si:H, défaut d’interface, etc. La présence d’un effet de confinement quantique est discutée. Grâce à une comparaison entre ces calculs et des mesures de conductance planaire en fonction de la température sur des structures (p)a-Si:H/(n)c-Si et (n)a-Si:H/(p)c-Si, les décalages de bande de valence et de conduction ont pu être estimés à 0.36 eV et 0.15 eV respectivement. En outre, il est montré que le décalage de la bande de valence est indépendant de la température, alors que le décalage de la bande de conduction suit les évolutions des bandes interdites de c-Si et a-Si:H. Ces mesures tendent à prouver que le ‘branch point’ dans a-Si:H est indépendant du dopage.Ensuite, les calculs analytiques sont approfondis pour prendre en compte différents aspects de la structure complète incorporée dans les cellules : contact avec un oxyde transparent conducteur, présence d’une couche de a-Si:H non-dopée à l’interface. A l’aide de simulations numériques et à la lumière de mesures de conductance planaire conjuguées à des mesures de la qualité de passivation de l’interface, des pistes pour optimiser les cellules à hétérojonction sont commentées. En particulier, il est montré qu’un optimum doit être trouvé entre une bonne passivation et une courbure de bande suffisante. Ceci peut être accompli par un réglage fin des propriétés de la couche tampon (épaisseur, dopage), du contact (travail de sortie élevé) et de l’émetteur (p)a-Si:H (densité de défauts et épaisseur). En particulier, un émetteur avec une DE importante conduit paradoxalement à de meilleures performances.Enfin, un nouveau type d’interface a été développé. La surface de c-Si a été oxydée volontairement dans de l’eau pure dé-ionisée à 80 °C avant le dépôt de (p)a-Si:H afin d’obtenir une structure (p)a-Si:H/SiO2/(n)c-Si. A l’aide d’un modèle de courant par effet tunnel implémenté dans le logiciel de simulation numérique AFORS-HET, l’effet d’une couche à grande bande interdite (comme c’est le cas pour SiO2) sur les performances de cellules est étudié : le facteur de forme et le courant de court-circuit sont extrêmement réduits. En revanche, une couche de SiO2 n’a que peu d’impact sur les propriétés optiques de la structure. Expérimentalement, les échantillons réalisés montrent une qualité de passivation à mi-chemin entre le cas sans couche tampon et le cas avec (i)a-Si:H : ceci est expliqué par la présence d’une charge fixe négative dans l’oxyde. La courbure de bande dans c-Si est moins affectée par la présence d’une couche d’oxyde que d’une couche de (i)a-Si:H. Les cellules solaires réalisées démontrent que le concept a le potentiel d’aboutir à de hauts rendements : sur des structures non-optimisées, une tension de court-circuit supérieure à 650 mV a été démontrée, alors que l’oxyde ne semble pas limiter le transport de charge. / The interface between amorphous silicon (a-Si:H) and crystalline silicon (c-Si) is the building block of high efficiency solar cells based on low temperature fabrication processes. Three properties of the interface determine the performance of silicon heterojunction solar cells: band offsets between a-Si:H and c-Si, interface defects and band bending in c-Si. These three points are addressed in this thesis.First, an analytical model for the calculation of the band bending in c-Si is developed. It assumes a constant density of states (DOS) in the a-Si:H band gap. The influence of most parameters of the structure on the band bending is studied: band offsets, DOS in a-Si:H, interface defects, etc. The presence of quantum confinement at the interface is discussed. Analytical calculations and temperature dependent planar conductance measurements are compared such that the band offsets on both (p)a-Si:H/(n)c-Si and (n)a-Si:H/(p)c-Si can be estimated: the valence band offset amounts 0.36 eV while the conduction band offset is 0.15 eV. In addition, it is shown that the valence band offset is independent of temperature whereas the conduction band offset follows the evolutions of c-Si and a-Si:H band gaps with temperature. A discussion of these results in the frame of the branch point theory for band line-up leads to the conclusion that the branch point in a-Si:H is independent of the doping.Then, analytical calculations are developed further to take into account the real solar cell structure where the a-Si:H/c-Si structure is in contact with a transparent conductive oxide and an undoped buffer layer is present at the interface. Measurements of the planar conductance and of the interface passivation quality are interpreted in the light of analytical calculations and numerical simulations to open a way towards a method for the optimization of silicon heterojunction solar cells. It is particularly shown that a trade-off has to be found between a good passivation quality and a significant band bending. This can be realized by tuning the buffer layer properties (thickness, doping), the TCO-contact (high work function) and the emitter (defect density and thickness). Interestingly, an emitter with a high DOS leads to better cell performances.Finally, a new type of interface has been developed, that was not applied to heterojunction solar cells so far. The c-Si surface has been oxidized in deionized water at 80 °C before the (p)a-Si:H emitter deposition such that (p)a-Si:H/SiO2/(n)c-Si structures were obtained. A tunneling current model has been developed, implemented in the 1D numerical device simulator AFORS-HET and used to study the effect of a wide band gap interfacial layer (as it is the case for SiO2) on cell performance: the fill-factor and the short-circuit current are dramatically reduced for thick and high barriers. However, a SiO2 layer has only little impact on optical properties. Fabricated samples show a passivation quality halfway between samples with no buffer layer and with an (i)a-Si:H buffer layer: this is explained by the presence of a negative fixed charge in the oxide. The band bending in (n)c-Si is higher with an oxide layer than with an (i)a-Si:H buffer layer. Solar cells demonstrate that this new concept has the potential to achieve high power conversion efficiencies: for non-optimized structures, an open-circuit voltage higher than 650 mV has been demonstrated, while the oxide does not seem to create a barrier to charge transport.
9

Etude de l'interface graphène - SiC(000-1) (face carbone) par microscopie à effet tunnel et simulations numériques ab initio / Investigation of the graphene - SiC(000-1) (carbon face) interface using scanning tunneling microscopy and ab initio numerical simulations

Hiebel, Fanny 13 December 2011 (has links)
Le graphène est un cristal bidimensionnel composé d'atomes de carbone arrangés sur un réseau en nids d'abeille. Ce matériau présente des propriétés électroniques intéressantes tant au niveau fondamental qu'en vue d'applications avec notamment une structure de bande exotique en « cône de Dirac » et de grandes mobilités de porteurs. Sa fabrication par graphitisation du SiC est particulièrement adaptée aux applications électroniques. Nous avons étudié ce système par microscopie à effet tunnel (STM) et simulations numériques ab initio avec comme objectif la caractérisation au niveau atomique de l'interface graphène - SiC(000-1) (face carbone) et l'étude de l'impact du substrat sur la structure électronique du graphène. Après un chapitre introductif à la thématique du graphène, suivi d'un chapitre présentant les deux techniques utilisées au cours de ce travail, nous présentons nos échantillons faiblement graphitisés obtenus sous ultra-vide. Nous avons identifié deux types d'interfaces, les reconstructions natives de la surface du SiC(000-1) appelées (2x2)C et (3x3), sur lesquelles reposent les ilots monoplan de graphène, avec un fort désordre rotationnel donnant lieu à des figures de moiré sur les images STM. Nous montrons par imagerie STM et spectroscopie tunnel que l'interaction graphène/(3x3) est très faible. Nous étudions ensuite le cas d'interaction plus forte graphène/(2x2) successivement du point de vue des états du graphène et des états de la reconstruction, dans l'espace direct et réciproque, de façon expérimentale et théorique. Enfin, nous considérons l'effet de défauts observés par STM à l'interface des ilots sur (2x2), modélisés par des adatomes d'hydrogène, sur le dopage et la structure de bande électronique du graphène. / Graphene refers to a two-dimensional crystal made of carbon atoms arranged on a honeycomb lattice. This material presents interesting electronic properties regarding fundamental physics as well as industrial applications, such as an exotic low-energy band structure and high charge carrier mobility. Its fabrication through the graphitization of SiC is a promising method for electronics. We studied this system using scanning tunnelling microscopy (STM) and ab initio numerical simulations with the aim of characterizing the graphene - SiC(000-1) (carbon face) interface and studying the impact of the substrate on graphene's electronic structure. After an introduction to the graphene topic and a description of our investigation techniques, we present our lightly graphitized samples obtained under ultra-high vacuum. We identify two interface structures, the native SiC(000-1) surface reconstructions named (2x2)C and (3x3), on top of which lie graphene monolayer islands with a high rotational disorder leading to various moiré patterns on STM images. Using STM, we show that the graphene/(3x3) interaction is very weak. We then study the stronger graphene/(2x2) interaction successively from the point of view of the graphene and the reconstruction states, in the direct and reciprocal space, using both our experimental and theoretical methods. Finally, we consider the impact of interfacial defects observed by STM through graphene/(2x2) islands and modelled with hydrogen adatoms on the electronic band structure and doping of graphene
10

High magnetic field studies of 2DEG in graphene on SiC and at the LaAlO³/SrTiO³ interface / Étude des gaz d’électrons bidimensionnels sous champ magnétique intense dans du graphène sur SiC et à l’interface entre les oxydes complexes LaAlO³ et SrTiO³

Yang, Ming 16 April 2018 (has links)
Cette thèse est dédiée à l'étude des propriétés de magnéto-transport des gaz d'électrons bidimensionnel, et plus spécifiquement du graphène sur carbure de silicium (G/SiC) ainsi qu’à l'interface entre les oxydes complexes LaAlO3 (LAO) et SrTiO3 (STO). Nous exploitons la génération d’un champ magnétique intense (jusqu'à 80 T) et les très basses températures (jusqu'à 40 mK) pour étudier les propriétés de transport quantique, qui sont évocatrices de la structure de bandes électroniques sous-jacente. Dans G/SiC, à la limite du régime d’effet Hall quantique, nous mesurons un plateau de Hall ultra-large quantifié à R=h/2e² couvrant un champ magnétique de plus de 70 T (de 7 T à 80 T). La résistance longitudinale est proche de zéro mais présente, de manière inattendue, de faibles oscillations périodiques avec l’inverse du champ magnétique. Sur la base d’observations microscopiques, ce gaz d’électrons 2D est modélisé par une matrice de graphène ayant une densité de porteurs de charge faible, parsemée d’ilots de taille micrométrique ayant un dopage plus important. Les simulations numériques des propriétés de transport reproduisent bien le plateau de Hall et la présence des oscillations. Au-delà du substrat de SiC qui agit comme un réservoir de charge et stabilise le facteur de remplissage à ν=2, un transfert de charge dépendant du champ magnétique entre les ilots chargés est responsable de la présence des oscillations de la magnétorésistance. Cette étude originale fournit de nouvelles perspectives pour des applications en métrologie. Les propriétés remarquables des gaz d’électrons 2D à l'interface entre les oxydes complexes LAO et STO sont aujourd'hui envisagées pour le développement de futurs dispositifs multifonctionnels. Toutefois, leurs propriétés électroniques sont encore mal connues et nécessitent des recherches plus approfondies. Dans ces systèmes, la magnétorésistance montre des oscillations de Shubnikov-de Haas (SdH) quasi-périodiques et un effet Hall linéaire jusqu'à 55 T à basse température. Nous observons une différence d’un ordre de grandeur entre la densité de porteurs extraite de la période des oscillations SdH et la pente de la résistance de Hall, impliquant la présence de nombreuses sous-bandes à l'énergie de Fermi. Les oscillations quasi-périodiques de la magnétorésistance sont bien reproduites par des simulations numériques prenant en compte l'effet Rashba à l'interface. De plus, à partir de l'évolution des oscillations SdH avec la tension de grille à très basse température (40mK), nous identifions les sous-bandes électroniques contribuant au transport, les orbitales atomiques dont elles dérivent, ainsi que leur localisation spatiale dans la profondeur de l'interface. / This thesis is devoted to the study of the magneto-transport properties of two dimensional electron gas (2DEG), and more specifically graphene on silicon carbide (G/SiC) as well as the interface between two complex oxides LaAlO3 / SrTiO3 (LAO/STO). We take advantage of very high magnetic field (up to 80 T) and very low temperature (down to 40 mK) to investigate the quantum transport properties, which are evocative of the underlying electronic band-structure. In G/SiC, close to the quantum Hall breakdown regime, we measure an ultra-broad quantum Hall plateau at R=h/2e² covering a magnetic field range of more than 70 T (from 7 T to 80 T). Accordingly, the longitudinal resistance is close to zero, but displays unexpected weak 1/B-periodic oscillations. Based on microscopic observations, this 2DEG is modeled as a low charge carrier density graphene matrix decorated by micrometers-size puddles with larger doping. Numerical simulations of the transport properties reproduce well both the broad Quantum Hall plateau and the presence of the oscillations. Besides the SiC substrate which acts as a charge reservoir and stabilizes the quantum Hall state at filling factor ν=2, a magnetic field dependent transfer of charges involving the puddles is responsible for the presence of the oscillating features. This original study provides new insights for resistance metrology purposes. The 2DEG arising at the interface between the complex oxides LAO and STO is nowadays envisioned for future multi-functional devices. Their electronic properties are still a matter of debate and require further investigations. The high field magneto-resistance of this 2DEG displays quasi-periodic Shubnikov-de Haas Oscillations (SdHO) and a linear Hall effect up to 55 T at low temperature. We observe a large discrepancy between the carrier density extracted from the period of the SdHO and the slope of the Hall resistance, which constitutes a strong evidence for the presence of many sub-bands crossing the Fermi energy. The quasi-periodic oscillations of the magneto-resistance are well reproduced by numerical simulations taking into account the strong Rashba effect at the interface. In addition, from the back-gate voltage evolution of the SdHO at sub-kelvin temperature, we identify the electronic sub-bands contributing to transport, the orbital symmetry from which they derive, as well as their spatial localization along the interface.

Page generated in 0.4555 seconds