• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correlation Between the Structural, Optical, and Magnetic Properties of CoFeB and CoFeB Based Magnetic Tunnel Junctions Upon Laser or Oven Annealing

Sharma, Apoorva 23 April 2021 (has links)
Diese Dissertation befasst sich mit der Untersuchung der maßgeblichen Herausforderungen der heutigen TMR-Präparation (tunneling magnetoresistance) für beispielsweise Magnetfeldsensor- oder auch Speichertechnologie (MRAM – magnetic random access memory). Im ersten Teil der Arbeit werden die elektronischen, strukturellen und magnetischen Eigenschaften der ferromagnetischen Elektrode eines typischen magnetischen Tunnelkontaktes, z.B. CoFeB, erforscht, wobei spektroskopische Ellipsometrie, magnetooptische Spektroskopie, Röntgendiffraktometrie und Messverfahren für den spezifischen elektrischen Widerstand zum Einsatz kommen. Weiterhin wurde der Einfluss der Temperatur einer thermischen Behandlung auf die optischen und magneto-optischen Merkmale untersucht, wobei eine starke Korrelation zwischen den beobachteten spektralen Merkmalen und der Kristallisation von CoFeB nachgewiesen wurde. Die (magneto-) optische Spektroskopie bietet somit eine zerstörungsfreie und besonders sensitive Validierungsmethode für die Dünnschichtkristallisation, die in die moderne CMOS Herstellungstechnologie integriert werden kann. Der zweite Teil der Arbeit befasst sich mit dem lokalen Tempern unter Verwendung eines fokussierten Laserstrahls, mit dem Ziel die Referenzmagnetisierung in einem magnetischen Tunnelkontakt definiert einzustellen und die Wirkung der hierfür notwendigen thermischen Behandlung auf die übrigen Schichten im Schichtstapel zu untersuchen. Hierzu wurden zahlreiche Parameter für das laserbasierte lokale Tempern variiert, um die optimale Austauschfeldstärke im magnetischen Referenzsystem einzustellen, idealerweise ohne den gegebenen Schichtstapel zu schädigen. Schließlich wurde der Einfluss des laserbasierten Temperns (als auch des Ofentemperns) auf die Unversehrtheit der Schichten und Grenzflächen, insbesondere auf die Diffusion verschiedener Elemente, mittels Röntgen-Photoemissionsspektroskopie untersucht.
2

Magneto-optical Kerr Effect Spectroscopy Study of Ferromagnetic Metal/Organic Heterostructures

Li, Wen 14 January 2011 (has links) (PDF)
Diese Dissertation stellt die erste Anwendung des magneto-optischen Kerr Effektes (MOKE) auf ferromagnetische Metall/Organische Heterostrukturen zur Aufklärung der optischen und chemischen Eigenschaften dar. Die MOKE-Untersuchungen wurden spektroskopisch in einem Energiebereich von 1.7 eV bis 5.5 eV durchgeführt. Heterostrukturen, wie sie hier untersucht werden, sind relevant für Anwendungen in der organischen Spintronik. Die Auswertung der Experimentellen Daten wird unterstützt durch numerische Simulationen eines Schichtmodells und ergänzende Untersuchung der strukturellen und magnetischen Eigenschaften unter Zuhilfenahme von AFM, TEM, SEM, STXM und SQUID-Magnetometrie. In der aktuellen Arbeit wurde Ni als Beispiel einer ferromagnetischen Schicht oberhalb oder unterhalb des organischen Films verwendet. Die organische Schicht besteht jeweils aus den diamagnetischen Molekülen Rubren, Pentacen und Fulleren, welche nur ein vernachlässigbares MOKE-Signal aufweisen. Zum Vergleich wurden das metallfreie Phtalocyanin H2Pc, welche ein nur eine bis zwei Größenordnungen schwächeres MOKE Signal als das genutzte Ni zeigen, betrachtet. Selbst Moleküle, welche kein intrinsisches MOKE-Signal zeigen, können über die optische Interferenz Einfluss auf das MOKE Signal von Ni nehmen. Daher kann die Dicke der organischen Schicht genutzt werden, um den Verlauf des MOKE Spektrum zu kontrollieren. Dies wird für Rubren und C60 gezeigt. Beim Vergleich des MOKE-Spektrums von Rubren/Ni- und Ni/Rubren-Doppelschichten war es möglich zu zeigen, dass die Metallablagerung an der Oberfläche einen Versiegelungseffekt hat, welcher die Oxidation der organischen Unterschicht verlangsamt. AFM und TEM Messungen zeigen, dass Ni die Morphologie der unteren Rubrenschicht annimmt. Die Proben, die mit einer geringen Wachstumsrate von Rubren hergestellt wurden, weisen bei einer nominellen Schichtdicke von 15 nm klar geformte Rubren-Inseln mit großen Abständen zwischen ihnen auf. In diesen Fällen zeigte die magnetische Hysteresemessung von MOKE bei Raumtemperatur eine unterschiedliche Gestalt in Abhängigkeit von der Photonenenergie. Die Hystereseschleifen wurden durch die Präsenz zweier magnetischer Phasen interpretiert. Die MOKE-Spektren dieser beiden Phasen wurden aus dem experimentellen Spektrum separiert. Die Gestalt des gemessenen Spektrums ändert sich mit der Stärke des angelegten Feldes aufgrund der unterschiedlichen Beiträge der zwei Phasen. An den ferromagnetischen Metall/organischen Schichten wurde TEM angewendet, um die Größe der Metallpartikel zu bestimmen, sowie STXM um die Orientierung der organischen Moleküle festzustellen. Die Schichtdicke, das Massenverhältnis sowie die Wechselwirkung zwischen Metall und organischen Material beeinflussen nachweislich das MOKE Signal.
3

Magneto-optical Kerr Effect Spectroscopy Study of Ferromagnetic Metal/Organic Heterostructures

Li, Wen 28 October 2010 (has links)
Diese Dissertation stellt die erste Anwendung des magneto-optischen Kerr Effektes (MOKE) auf ferromagnetische Metall/Organische Heterostrukturen zur Aufklärung der optischen und chemischen Eigenschaften dar. Die MOKE-Untersuchungen wurden spektroskopisch in einem Energiebereich von 1.7 eV bis 5.5 eV durchgeführt. Heterostrukturen, wie sie hier untersucht werden, sind relevant für Anwendungen in der organischen Spintronik. Die Auswertung der Experimentellen Daten wird unterstützt durch numerische Simulationen eines Schichtmodells und ergänzende Untersuchung der strukturellen und magnetischen Eigenschaften unter Zuhilfenahme von AFM, TEM, SEM, STXM und SQUID-Magnetometrie. In der aktuellen Arbeit wurde Ni als Beispiel einer ferromagnetischen Schicht oberhalb oder unterhalb des organischen Films verwendet. Die organische Schicht besteht jeweils aus den diamagnetischen Molekülen Rubren, Pentacen und Fulleren, welche nur ein vernachlässigbares MOKE-Signal aufweisen. Zum Vergleich wurden das metallfreie Phtalocyanin H2Pc, welche ein nur eine bis zwei Größenordnungen schwächeres MOKE Signal als das genutzte Ni zeigen, betrachtet. Selbst Moleküle, welche kein intrinsisches MOKE-Signal zeigen, können über die optische Interferenz Einfluss auf das MOKE Signal von Ni nehmen. Daher kann die Dicke der organischen Schicht genutzt werden, um den Verlauf des MOKE Spektrum zu kontrollieren. Dies wird für Rubren und C60 gezeigt. Beim Vergleich des MOKE-Spektrums von Rubren/Ni- und Ni/Rubren-Doppelschichten war es möglich zu zeigen, dass die Metallablagerung an der Oberfläche einen Versiegelungseffekt hat, welcher die Oxidation der organischen Unterschicht verlangsamt. AFM und TEM Messungen zeigen, dass Ni die Morphologie der unteren Rubrenschicht annimmt. Die Proben, die mit einer geringen Wachstumsrate von Rubren hergestellt wurden, weisen bei einer nominellen Schichtdicke von 15 nm klar geformte Rubren-Inseln mit großen Abständen zwischen ihnen auf. In diesen Fällen zeigte die magnetische Hysteresemessung von MOKE bei Raumtemperatur eine unterschiedliche Gestalt in Abhängigkeit von der Photonenenergie. Die Hystereseschleifen wurden durch die Präsenz zweier magnetischer Phasen interpretiert. Die MOKE-Spektren dieser beiden Phasen wurden aus dem experimentellen Spektrum separiert. Die Gestalt des gemessenen Spektrums ändert sich mit der Stärke des angelegten Feldes aufgrund der unterschiedlichen Beiträge der zwei Phasen. An den ferromagnetischen Metall/organischen Schichten wurde TEM angewendet, um die Größe der Metallpartikel zu bestimmen, sowie STXM um die Orientierung der organischen Moleküle festzustellen. Die Schichtdicke, das Massenverhältnis sowie die Wechselwirkung zwischen Metall und organischen Material beeinflussen nachweislich das MOKE Signal.

Page generated in 0.075 seconds