Spelling suggestions: "subject:"magnons"" "subject:"gagnons""
11 |
Probing Coherent States and Nonlinear Properties in Multifunctional Material SystemsHerath Mudiyanselage, Rathsara Rasanjalee Herath 15 April 2021 (has links)
The rapid progress on developing new and improved multifunctional materials, for optoelectronic and spin based phenomena/devices, have increased the importance of the fundamental understanding of their coherent states and nonlinear optical properties. This study is aimed at characterizing, modeling, and controlling the fundamental electronic, phononic, and spin properties of several classes of materials through nonequilibrium and nonlinear light-matter interactions, coupled with a novel design of the material phases, interfaces, and heterostructures. This research directly addresses the Grand Challenges identified in the Basic Energy Sciences Advisory Committee report "Directing Matter and Energy: Five Challenges for Science and the Imagination" (Hemminger, 2007) [1], in particular, the area: "Matter far beyond equilibrium" and addresses the questions, "How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents and how can we control these properties?" and "How do we design and perfect atom- and energy-efficient synthesis of revolutionary new forms of matter with tailored properties?". The knowledge gained from these fundamental studies can provide new information for a broad community to provide concepts for the next generation of multifunctional materials and devices, and resulted in several publications and conference presentations. The materials studied in this dissertation included multiferroic BaTiO3-BiFeO3 [2], ferroelectric Pb0.52Zr0.48TiO3 (PZT), InAs/AlAsSb multi-quantum-well [3], lead halide perovskite [4], n-type InAsP films [5, 6], and nanolaminate plasmonic crystals [7]. Probing multiferroics, which are materials that can exhibit ferromagnetic, ferroelectric, and ferroelastic orders simultaneously in a single phase, was a main focus of this study. BiFeO3 (BFO) is the most widely investigated multiferroic due to its high Neel and Curie temperatures and has antiferromagnetic and ferroelectric properties [8]. An inherent drawback of BFO is its large leakage currents. In this project, (1 − x)BaTiO3-(x)BiFeO3, x = 0.725 (BTO-BFO) heterostructures were investigated [9], where the conductivity of the solid solution can be reduced by adding another perovskite material, BaTiO3 [2]. We aimed to study optically induced coherent states in our BTO-BFO structures. Time resolved pumpprobe spectroscopic measurements were performed at room temperature as well as at low temperature (100 K) up to 10 T. Coherent acoustic phonons were observed both in a film and nanorods, resulting in coherent phonon frequencies of 27 and 33 GHz, respectively [2]. Coherent phonon spectroscopy is a sensitive tool to characterize the interfaces and can be employed as an effective ultrasensitive quantum sensor [10]. Furthermore, in the nanorods arrays of BTO-BFO, an additional oscillation with frequency in the range of 8.1 GHz was observed. This frequency is close to a theoretically predicted magnon frequency which could indicate the coexistence of coherent phonons and magnons in the nanorods arrays [2]. In an analogy to photonics which relies on electromagnetic waves, magnonics utilizes spin waves to carry and process information, offering several advantages such as an operation frequency in the THz range. Recently, "a quantum tango" [11] was reported where coupled coherent magnon and phonons modes were formed on a surface patterned ferromagnet. Furthermore, BTO-BFO heterostructures were probed using transient birefringence and magneto-optical Kerr effect spectroscopy. The results demonstrated that the magnetic field dependence of coherent phonons, measured by these two techniques, exhibits more sensitivity to the external magnetic fields compared to the differential reflectivity technique [2]. Moreover, nonlinear optical properties of this structure were investigated via second harmonic generation spectroscopy, where wavelength and polarization dependence of this nonlinear observation will be discussed in this dissertation. As part of this study, another class of multiferroic materials, with strong ferroelectric and piezoelectric properties, Pb0.52Zr0.48TiO3 (PZT) was studied [12]. In this project, the nonlinear optical properties of PZT nanorod arrays were investigated. Clear signatures of second harmonic generations from 490-525 nm (2.38-2.53 eV) at room temperature, were observed. Furthermore, time resolved differential reflectivity measurements were performed to study dynamical properties in the range of 690-1000 nm where multiphoton processes were responsible for the photoexcitations. We compared this excitation scheme, which is sensitive mainly to the surface states, to when the photoexcited energy (∼ 3.1 eV) was close to the bandgap of the nanorods. Our results offer promises for employing these nanostructures in nonlinear photonic applications. Furthermore, the established techniques during my research provided new insights on optical properties of InAs/AlAsSb multi-quantum-well [3], lead halide perovskite [4], n-type InAsP films [5, 6], and nanolaminate plasmonic crystals [7], and the results will be briefly presented in this dissertation. / Doctor of Philosophy / My research activities have explored multifunctional materials and heterostructures with strongly enhanced coupled electric and magnetic orders and optical properties. In particular, pursuing novel heterostructure designs such as multiferroics can provide control over electric and magnetic ordering in mixed dimensionality. This, together with control at the level from lattice structure to electron spin states can give rise to improved or even qualitatively new and robust materials properties. For example, a better understanding of the phenomena associated with the spin degree of freedom of electrons allows for advancement in spintronic device applications such as storage, logic, and sensors, which are associated with quantum computers and quantum communications [13, 14, 15]. Overarching questions and goals of my activities included: What are the microscopic origins and mechanisms of nonlinear response in strongly coupled nanostructured materials and its relationship to electronic, spin, and lattice degrees of freedom? (2) What are the effects of dimensionality and quantum confinement on optical properties? (3) How do we control and manipulate the coherent states, such as coherent phonons and magnons using external and internal fields, material composition, and morphology to achieve maximal efficiency and tunability? Addressing many of the challenges in the fast-paced technological world requires continued developments of new materials with enhanced optical properties. The knowledge gained from my fundamental studies can provide new information for the next generation of multifunctional materials and devices with advanced optical properties and resulted in several publications and conference presentations.
|
12 |
The Pseudo-Unitary Group U(p,q) in Quantum MagnonicsMeyer-Mölleringhof, Maximilian January 2024 (has links)
The study of magnons is an essential part of combining quantum information science and spintronics, allowing for the investigation of quantum properties such as entanglement in solid-state devices. Magnons are commonly described using the theory of T. Holstein and H. Primakoff, associating the spin operators with bosonic creation and annihilation operators. The quantum mechanical properties inherent to this description are the commutation relations. These relations must be conserved under transformation of the basis. This requires the application of pseudo-unitary transformations U (p, q) when studying the magnon eigenspectrum for example. Depending on the system at hand, the groups U (1, 1) and U (2, 2) are of particular interest and will be the focus of this work. We present a general formalism that leads to a representation of pseudo-unitary matrices via their self-adjoint elements. We apply this representation in examples involving magnons in antiferromagnets to find an explicit picture in connection to material properties. Finally, we explore numerical methods for determining magnon energies and compare them to the analytical counterpart.
|
13 |
Termodinâmica estatística de não-equilíbrio da condensação de Fröhlich-Bose-Einstein de mágnons excitados / Non-equilibrium statistical thermodynamics of the Fröhlich-Bose-Einstein condensation of hot magnonsVannucchi, Fabio Stucchi, 1981- 31 October 2018 (has links)
Orientadores: Roberto Luzzi, Áurea Rosas Vasconcellos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-10-31T13:25:44Z (GMT). No. of bitstreams: 1
Vannucchi_FabioStucchi_D.pdf: 4583166 bytes, checksum: 8617f375a632ae1e33b0c986862ea535 (MD5)
Previous issue date: 2011 / Resumo: Este trabalho tem por objetivo desenvolver uma teoria sobre a termodinâmica de não-equilíbrio de mágnons excitados por fonte externa e em contato com um banho térmico. A teoria é aplicada ao recém observado acúmulo de mágnons nos estados de mínima freqüência em experimentos com filmes finos magnetizados de granada de ferro-ítrio afastados do equilíbrio via fonte de radiação de microondas. Seguindo um formalismo de ensembles estatísticos de não-equilíbrio, a partir do hamiltoniano do sistema magnético são obtidas as equações de evolução para as variáveis termodinâmicas. Entre estas equações, as que descrevem a evolução das populações médias de mágnons são estudadas em detalhe e atenção especial é dada às contribuições não- lineares. Mostra-se que, por um lado, o termo não-linear proveniente da interação do sistema magnético com a rede cristalina transfere energia das populações dos modos de alta freqüência para os de baixa, gerando um acúmulo nos modos de mínima freqüência - o Efeito Fröhlich. Por outro lado, a interação mágnon-mágnon origina uma contribuição à evolução das populações que tende a termalizar o sistema em termos de uma temperatura de não-equilíbrio. É ainda utilizada uma ¿modelagem de dois fluidos¿, em que as equações cinéticas das populações de mágnons associadas a todos os modos são contraídas em apenas duas, que representa os modos de mínima freqüência e aqueles alimentados. Esta modelagem permite estudar quantitativamente a evolução temporal do sistema via integração numérica. Constata-se que, para um determinado intervalo de taxas de alimentação, forma-se o condensado devido ao Efeito Fröhlich. Para valores mais altos da potência da fonte de alimentação, a contribuição devido à interação entre mágnons torna-se dominante e a formação do condensado é inibida. Por fim, os diversos processos de relaxação do condensado para o equilíbrio são investigados em função do valor da fonte externa do sistema / Abstract: The purpose of this work is to develop a nonequilibrium thermodynamic theory on rnagnons excited by an external pumping source embedded in a thermal bath. This theory is applied to the recently observed experiments with magnetic thin films of yttrium iron garnet driven out of equilibrium through microwave radiation pumping. Resorting to a Non-Equilibrium Statistical Ensemble Formalism, the evolution equations for the magnon populations are obtained and studied. The nonlinear contribution arising out of the spin-lattice interaction transfers the energy in excess of equilibrium from the pumped frequency modes to the lower frequency ones, and, in a cascade down process, occurs a large grow in the magnon populations of the lowest in frequency modes - a phenomenon we call Frohlich Effect. In opposition to this contribution, there is anot her one, generated by the magnon-magnon interaction, that tends to lead the system to a state of internal nonequilibrium thermalization. We introduce a modeling consisting in a kind of ¿two-fluid model", in which the kinetic equations for the magnon populations are contracted in only two, representing the modes lowest in frequency and the ones that are pumped by the external source. A quantitative study is performed through numerical integration of the two related evolution equations. The emergence of the condensate, due to the Frohlich Effect, is evidenced for a range of source power. For higher feeding taxes, the contribution originated by the magnon-magnon interaction becomes dominant and the emergence of the condensate is inhibited. Finally, the several relaxation processes in the condensate leading to equilibrium are analyzed in terms of the source power / Doutorado / Física Estatistica e Termodinamica / Doutor em Ciências
|
14 |
Novel type of neutron polarization analysis using the multianalyser at PUMA implementation, characterization and first experimentsSchwesig, Steffen 16 August 2019 (has links)
No description available.
|
15 |
Theory of many-body effects in the Kondo-lattice modelHickel, Tilmann 26 June 2006 (has links)
Das magnetische Verhalten zahlreicher Materialien lässt sich auf eine indirekte Wechselwirkung lokalisierter magnetischer Momente, vermittelt durch die Elektronen eines Leitungsbandes, zurückführen. Das Kondo-Gitter-Modell hat sich als elegante Möglichkeit bewährt, diesen Prozess quantenmechanisch zu beschreiben. Es reduziert die Physik auf eine intraatomare Wechselwirkung der Spins von lokalisierten und itineranten Elektronen. Die vorliegende Arbeit ist den analytischen Eigenschaften dieses Modells gewidmet. Die besondere Herausforderung des Kondo-Gitter-Modells besteht dabei im Zusammenwirken zweier verschiedener Teilchensorten, beschrieben durch Fermi-Operatoren sowie quantenmechanische Spins. Bisherige Untersuchungen haben sich in der Regel nur auf eine der beiden Teilchensorten konzentriert. Mit der Projektions-Operator-Methode stellen wir eine Möglichkeit vor, beide Teilsysteme in gleicher Qualität zu behandeln. Die Auswertung des Teilsystems der itineranten Elektronen führt auf einen Ausdruck für die Selbstenergie, der lineare und quadratische Effekte in der Wechselwirkung exakt beschreibt. Die resultierenden Zustandsdichten weisen starke Korrelationseffekte auf. Deren Untersuchung dient sowohl der Bestätigung von Ergebnissen weniger systematischer Zugänge als auch dem Aufzeigen neuer Vielteilchen-Phänomene. Die Anwendung der Projektions-Operator-Methode auf das System der lokalisierten Momente führt zu einer Analyse der bereits bekannten RPA (random phase approximation). Zu diesem Zweck werden die Magnonenspektren und die Curie-Temperaturen systematisch untersucht. Dabei treten bisher unbekannte Schwachpunkte der RPA zu Tage, die auch die Kombination mit Theorien für das itinerante Teilsystem verhindern. Verbesserungen und Alternativen zur RPA werden diskutiert. / The magnetic behaviour of various materials is due to an indirect interaction of localized magnetic moments, which is based on itinerant electrons in a conduction band. The Kondo-lattice model is an elegant approach for a quantum-mechanical description of this process. It reduces the relevant physics to an intra-atomic exchange interaction of the localized and the itinerant electrons. The aim of the present work is a detailed investigation of analytic properties of this model. Here, the interplay of two distinct types of particles, described by Fermi operators and quantum-mechanical spin operators respectively, is a major challenge of the considered model. Previous studies have focused on one of these subsystems only. Using the projection-operator method, we suggest an efficient way to describe both subsystems on the same level of approximation. An evaluation of the subsystem of itinerant electrons yields an expression for the self-energy, which describes linear and quadratic interaction effects exactly. The densities of states derived with this theory show strong correlation effects. We were able to assess results obtained with less systematic approaches and to predict new many-particle effects. The application of the projection-operator method to the subsystem of localized magnetic moments results in a detailed analysis of the RPA (random phase approximation). The dependence of magnon spectra and Curie temperatures on model parameters are investigated systematically. Previously unknown drawbacks of the RPA are revealed, which prevent the combination of these results with theories for the itinerant subsystem. Improvements beyond RPA and alternative approximations are discussed.
|
16 |
Study of the longitudinal spin Seebeck effect in hybrid structures with yttrium iron garnet and various metallic materialsGuerra, Gabriel Andrés Fonseca 10 March 2014 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-04-08T12:40:55Z
No. of bitstreams: 2
DISSERTAÇÃO Gabriel Fonseca.pdf: 3837074 bytes, checksum: e2c9b20882785e374170658d648ee389 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-04-08T12:40:55Z (GMT). No. of bitstreams: 2
DISSERTAÇÃO Gabriel Fonseca.pdf: 3837074 bytes, checksum: e2c9b20882785e374170658d648ee389 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-03-10 / Conselho Nacional de Desenvolvimento Científi co e Tecnol ógico;
Coordenação de Aperfeiçoamento de Pessoal de Ní vel Superior;
Financiadora de Estudos e Projetos;
Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco. / In this master thesis we study experimentally the longitudinal spin Seebeck effect
(LSSE) in bilayers made of a ferromagnetic insulator (FMI) and a metallic layer (M).
We also present a theoretical model based on the spin current density ⃗ Js carried
by a non-equilibrium magnon distribution, generated by a thermal gradient ∇T
across the thickness of the FMI. When ⃗ Js reach the FMI/M interface it is pumped
towards the M layer due to conservation of the angular momentum, so, the M
layer is essential for the LSSE existence. Here the FMI consists of a Yttrium Iron
Garnet (YIG) lm, grown over a Gadolinium Gallium Garnet (GGG) substrate.
Different metallic materials were used as the M layer i.e. Pt and Ta that have normal
behavior and Py that is a ferromagnetic metal (FMM). The experimental procedure
consists of systematic measurements of the electric voltage VISHE, produced by ⃗ Js
through the Inverse Spin Hall Effect (ISHE) in the normal metal or (FMM) layer.
In YIG/Pt measurements were done in the temperature range from 20 to 300 K.
The experimental data are tted to the proposed model for the LSSE and good
agreement is obtained. The results shows that the Py and Ta can be used to detect
the LSSE with the ISHE. The results of this master thesis have strong interest in
the area of spin caloritronics helping to the development of the eld and to raise
possibilities of new spintronic devices. ----- Nesta diserta ção e estudado experimentalmente o Efeito Seebeck de Spin Longi-
tudinal (LSSE), em bicamadas formadas por um isolante ferromagn etico (FMI) e um
lme metalico (M). Tamb em foi desenvolvido um modelo te orico baseado na den-
sidade de corrente de spin ⃗ Js que existe quando uma distribui c~ao de m agnons fora
do equil brio e gerada por um gradiente t ermico ∇T aplicado na sec ção transversal
do FMI. Quando ⃗ Js chega na interface FMI/M e bombeada para a camada M satis-
fazendo a conserva ção do momentum angular, assim que a camada NM e essencial
para ter um LSSE. Como camada FMI foi utilizada a granada de trio e ferro (YIG)
crescida num substrato de (GGG). Diferentes materiais metalicos foram utilizados
como camada M, sendo Pt e Ta paramagn eticos e o Py ferromagnetico. O proced-
imento experimental consiste na medi c~ao sistem atica da voltagem el etrica VISHE,
que e produzida por ⃗ Js por meio do efeito Hall de spin inverso (ISHE) que ocorre na
camada M. As medidas em YIG/Pt foram feitas numa faixa ampla de temperatura
de 20 a 300 K. Os dados experimentais são fi tados com a teoria proposta para o
LSSE encontrando-se boa concordância. Nossos resultados mostram que o Py e o Ta
s~ao bons candidatos para detec ção do LSSE. Esta disserta ção e de grande interesse
na area da caloritrônica de spin, ajudando no desenvolvimento deste campo e na
concep ção de novos dispositivos tecnol ogicos baseados na spintrônica.
|
17 |
Time and Space Resolved Spin-Heat Transport in the Magnetic Insulator Yttrium Iron GarnetJamison, John S. 21 September 2020 (has links)
No description available.
|
18 |
Experimental characterization of four-magnon scattering processes in ferromagnetic conduitsHula, Tobias 07 August 2024 (has links)
Spin waves and their quanta, magnons, are the wave-like excitations of a magnetically ordered medium. The technological prospect of utilizing them as low-loss information carriers has driven various research efforts in the field of magnonics. Spin waves arise further interest due to their inherently strong nonlinear behavior which results from their interaction with the surrounding magnetic texture. Hence, magnons are subject to a variety of nonlinear effects and allow for extensive studies of such phenomena. In this work, the propagating spin-waves in micro structured Co25Fe75 conduits have been investigated by means of micro focused Brillouin light scattering spectroscopy. Due to the low intrinsic damping of this metallic compound, spin-wave decay lengths in the order of 20 μm can be observed which have not been reported elsewhere for other ferromagnet thin film materials. Furthermore, nonlinear four-magnon scattering processes can be observed when increasing the spin-wave amplitudes applying a sufficiently strong microwave excitation. This phenomenon introduces additional losses for propagating waves as it diverts energy into the parametric generation of secondary states. It is shown that the reduction of the spin-wave decay lengths reaches up to 50 %. In the second part, a novel approach for the utilization of four-magnon scattering is presented. It is shown that an additional driving signal at a secondary driving frequency can steer the nonlinear process in such a way, that a set of secondary parametric states with a well-defined frequency spacing is populated. This process is referred to as stimulated four-magnon scattering, as it enhances specific nonlinear scattering events. As a result, frequency combs with multiple equidistant modes are observed, which exhibit frequency spacings of 400 MHz up to 2 GHz. These complex spin-wave spectra can actively be tuned in various ways using external parameters such as the driving signals. These results advance the understanding of nonlinear spin waves in general and expands the range of possible technological applications of magnons.:List of Figures
List of Tables
List of Abbreviations and Acronyms
List of Symbols
1 Introduction
2 Theoretical background
2.1 Interactions in microstructured thin film ferromagnets
2.1.1 Exchange interaction
2.1.2 Dipolar interaction and demagnetizing fields
2.2 Magnetization dynamics in ferromagnetic thin films
2.2.1 The Landau-Lifshitz and Gilbert equation
2.2.2 Spin waves
2.3 Nonlinear phenomena
2.3.1 Four-magnon scattering
3 Materials and Methods
3.1 Materials and sample fabrication
3.1.1 The low damping alloy Co25Fe75
3.1.2 Patterning: electron beam and optical lithography
3.1.3 Microwave antenna structures
3.2 Brillouin light scattering
3.2.1 Magnon-photon interaction
3.2.2 The Tandem Fabry Pérot interferometer
3.2.3 BLS microscopy (μBLS)
3.2.4 Phase-resolved BLS (PR-μBLS)
3.2.5 Temporal resolution (TR-μBLS)
3.3 Micromagnetic simulations in MuMax3
3.3.1 Mesh and material parameters
3.3.2 Simulation of magnetization dynamics
4 Results
4.1 Magnon transport in Co25Fe75 micro-conduits
4.1.1 Low external fields and magnetic groundstate
4.1.2 Magnon transport at low driving powers
4.1.3 Impact of nonlinear four-magnon scattering on magnon transport
4.2 Magnon frequency combs
4.2.1 Introduction on stimulated four-magnon scattering
4.2.2 Experimental realization
4.2.3 Amplitude-dependent observations
4.2.4 Tunability of spin-wave frequency combs
4.2.5 Variations of the excitation geometry
5 Summary and outlook
Own publications
Bibliography 109 Acknowledgement
A Appendix
A.1 Fabrication of Co25Fe75 microstructures
A.2 Atomic Force Microscopy measurement on a 5 μm wide conduit
A.3 BLS measurement of spin-wave decay lengths in a 5 μm wide conduit
A.4 Calculations: Temporal profile of stimulated four-magnon scattering
A.5 Power dependent frequency comb formation measured at positions II & III
A.6 Averaged frequency comb mode numbers at reversed magnetic field polarity
|
19 |
Symmetry and Magnon Band Topology: Constraint and EnrichmentCorticelli, Alberto 03 May 2023 (has links)
In a crystalline ordered magnet, coherent excitations called spin waves, or magnons, propagate in the material forming band structures in an analogous way to electrons. Spin waves can possess non trivial topology associated with novel response functions of fundamental and potential technological interest. In particular, topologically protected surface states of magnons offer a new path towards coherent spin transport for spintronics applications. One of the central issues in this area is to establish the conditions under which band topology can arise in magnons and explore its variety. In this work we harness the full power of symmetry as applied to magnetism, to facilitate the discovery of new topological magnon models and materials.
We show how to efficiently identify such systems by adapting the electronic topological quantum chemistry scheme to magnons, using constraints imposed by time reversal and crystalline symmetries to determine possible gapped and nodal topology in magnon models. Further, we explore enhanced symmetries beyond this paradigm, which are nevertheless natural for magnons: the spin-space groups. Exploring spin-space symmetry, which has wholly or partially decoupled magnetic and lattice degrees of freedom, reveals a proliferation of nodal points, lines, and planes beyond the standard crystalline symmetries. Linear spin wave theory is one of the most valuable techniques to study magnons, however, it can fail in different scenarios. Because of its importance to the community, we explore cases where it contains spurious symmetries which can potentially hide important physics in the spectra, like topology. We provide therefore a simple way to identify and resolve such cases within the linear theory.
Finally, a pressing issue in magnons is the experimental detection and manipulation of topological surface states. Even more, the characterisation of generic 2D magnetism is an open problem. We contribute to this by devising an experimental setup based on quasi-particle interference which potentially could solve this long-lasting challenge. / Kohärente Anregungen, wie Spinwellen, auch Magnonen genannt, formen Bandstrukturen in kristallin geordneten Materialien. Diese Magnonen können eine nicht triviale Topologie aufwei- sen, welche neuartige Antwortfunktionen erzeugen können. Sie sind daher von technologischem Interesse. Insbesondere die topologisch geschützten Oberflächenzustände der Magnonen ermöglichen eine Realisierung von kohärentem Spin Transport und erlauben eine potentielle Anwendung in der Spintronik. Zentraler Punkt der aktuellen Forschung sind Bedingungen, unter denen eine nicht triviale Magnon-Bandtopologie entstehen kann und welche Möglichkeiten diese eröffnen.
In dieser Arbeit untersuchen wir diese neuartigen topologischen Phasen für verschiedene Mo- delle unter Nutzung verschiedener Symmetrien. Die Erweiterung des elektronischen “topological quantum chemistry” Ansatzes für Magnonen erlaubt eine effiziente Identifikation dieser topologischen Eigenschaften. Der Ansatz basiert auf verschiedenen Einschränkungen, welche von der Zeitumkehr und kristallinen Symmetrien induziert werden. Darüber hinaus untersuchen wir die Anwendung von weiteren Symmetrien, welche relevant für Magnonen sind: die Spin-Raumgruppen. Die Erforschung der Spin-Raum-Symmetrie, welche magnetische Freiheitsgrade und Gittersyme- trien ganz oder teilweise entkoppelt, führt zur Ausbreitung von Knotenpunkten, Linien und Ebenen jenseits der standardmäßigen Kristallsymmetrien. Die lineare Spinwellentheorie ist eine der erfolgreichsten Methoden zur Untersuchung von Magnonen, kann jedoch unter verschiedenen Umständen versagen, da künstliche Symmetrien essenzielle Physik, wie beispielsweise topologische Eigenschaften, verbergen. Ansätze, die im Rahmen dieser Dissertation erarbeitet worden sind, helfen dabei, solche Fälle zu identifizieren und zu verstehen.
Aktuelle Experimente zur Manipulation topologischer Oberflächenzustände von Magnonen, sowie die allgemeine Untersuchung von Magnetismus in zwei Dimensionen, fehlen. Daher präsentieren wir einen möglichen experimentellen Aufbau, basierend auf Quasi-Teilchen-Interferenz, welcher einen möglichen Ausweg aufzeigt.
|
20 |
Magnetization Study of the Heavy-Fermion System Yb(Rh1-xCox)2Si2 and of the Quantum Magnet NiCl2-4SC(NH2)2Pedrero Ojeda, Luis 25 June 2013 (has links) (PDF)
This thesis presents a comprehensive study of the magnetic properties and of quantum phase transitions (QPTs) of two different systems which have been investigated by means of low-temperature magnetization measurements. The systems are the heavy-fermion Yb(Rh1-xCox)2Si2 (metallic) and the quantum magnet NiCl2-4SC(NH2)2 (insulator). Although they are very different materials, they share two common properties: magnetism and QPTs. Magnetism originates in Yb(Rh1-xCox)2Si2 from the trivalent state of the Yb3+ ions with effective spin S = 1=2. In NiCl2-4SC(NH2)2, the magnetic Ni2+ ions have spin S = 1. These magnetic ions are located on a body-centered tetragonal lattice in both systems and, in this study, the QPTs are induced by an external magnetic field.
In Yb(Rh1-xCox)2Si2 the evolution of magnetism from itinerant in slightly Co-doped YbRh2Si2 to local in YbCo2Si2 is examined analyzing the magnetic moment versus chemical pressure x phase diagram in high-quality single crystals, which indicates a continuous change of dominating energy scale from the Kondo to the RKKY one. The physics of the antiferromagnet YbCo2Si2 can be completely understood. On the other hand, the physics of pure and slightly Co-containing YbRh2Si2 is much more complex, due to the itinerant character of magnetism and the vicinity of the system to an unconventional quantum critical point (QCP). The field-induced AFM QCP in Yb(Rh0.93Co0.07)2Si2 and in pure YbRh2Si2 under a pressure of 1.5GPa is characterized by means of the magnetic Grüneisen ratio. The final part of this thesis describes quantum criticality near the field-induced QCP in NiCl2-4SC(NH2)2 .
These results will be compared to the theory of QPTs in Ising and XY antiferromagnets. Since the XY -AFM ordering can be described as BEC of magnons by mapping the spin-1 system into a gas of hardcore bosons, the temperature dependence of the magnetization for a BEC is analytically derived and compared to the results just below the critical field. The remarkable agreement between the BEC theory and experiments in this quantum magnet is one of the most prominent examples of the concept of universality.
|
Page generated in 0.0502 seconds