Spelling suggestions: "subject:"majoration"" "subject:"majorations""
1 |
Le statut de grand dramaturge au XVIIe siècle : Corneille, Racine et Molière, figures vedettes d’une histoire littéraire en construction (1640-1729) / The great playwright status in the 17th century : Corneille, Racine, Molière, stars of literary history in the making (1640-1729)Souchier, Marine 23 November 2018 (has links)
Dès la fin du XVIIe siècle, Corneille, Racine et Molière se voient attribuer une supériorité indiscutable sur l’ensemble des autres dramaturges contemporains. Cette hiérarchie dont l’histoire littéraire actuelle a hérité continue à nous faire admettre comme une évidence la précellence accordée à ce trio de « classiques » et les études consacrées aux auteurs dits « mineurs » interrogent rarement le statut d’auteur « majeur ». Nous avons souhaité étudier le processus d’élaboration du statut de grand dramaturge. Cette thèse met ainsi en lumière les différents aspects et manifestations de cette construction, dont elle retrace les étapes du vivant des auteurs — des années 1640 à 1680 —, tout en identifiant les facteurs permettant de comprendre pourquoi ces trois dramaturges bénéficièrent d’un tel statut, au détriment de leurs confrères et concurrents. Ce travail observe ensuite l’immédiate postérité de nos auteurs — des années 1670 à 1720 —, afin de montrer comment la hiérarchisation et la classification à l’œuvre dans le double processus de majoration et de minoration desdramaturges posent les bases de l’histoire du théâtre français. Pour comprendre la constitution du panthéon des grands dramaturges, nous analysons les mécanismes d’écriture de l’histoire du théâtre dit « classique » et faisons émerger le processus de mythification qui préside à l’apparition de la « triade sacrée » Corneille- Racine-Molière. Nous expliquons alors comment l’histoire du théâtre français s’écrit à la gloire de ces auteurs, à partir et autour de leurs trois figures, classicisées et transformées en symboles du « siècle de Louis XIV ». / From the late 17th century, Corneille, Racine and Molière are given an undeniable superiority over all other contemporary playwrights. This hierarchy, from which current literary history has inherited, continues to make us consider the pre-eminence granted to this “classical” trio as obvious and the studies devoted to the so-called “minor” authors rarely question the “major” author status. Our goal has been to study the elaboration process of the great playwright status. Thus, this PhD thesis highlights the different aspects and manifestations of this construction, retracing its stages during the authors’ lifetime — from the 1640s to the 1680s — while identifiying the factors allowing to understand why these three playwrights were given such a status, at the detriment of their colleagues and competitors. Moreover, this work studies our authors’ immediate posterity — from the 1670s to the 1720s — in order to show how the hierarchy and classification at work in the “majoration” and “minoration” process lay the foundation of French theater history. To understand how the great playwrights’ pantheon was built, we analyze the writing mechanisms of “classical” theater history and bring out the process of mythification that leads to the birth of the “sacred triad” Corneille-Racine-Molière. We then explain how the French theater history is written in praise of these authors, from and around their three figures, classicized and converted into symbols of “the age of Louis XIV”.
|
2 |
Bayesian methods for inverse problems in signal and image processing / Méthodes bayésiennes pour la résolution des problèmes inverses de grande dimension en traitement du signal et des imagesMarnissi, Yosra 25 April 2017 (has links)
Les approches bayésiennes sont largement utilisées dans le domaine du traitement du signal. Elles utilisent des informations a priori sur les paramètres inconnus à estimer ainsi que des informations sur les observations, pour construire des estimateurs. L'estimateur optimal au sens du coût quadratique est l'un des estimateurs les plus couramment employés. Toutefois, comme la loi a posteriori exacte a très souvent une forme complexe, il faut généralement recourir à des outils d'approximation bayésiens pour l'approcher. Dans ce travail, nous nous intéressons particulièrement à deux types de méthodes: les algorithmes d'échantillonnage Monte Carlo par chaînes de Markov (MCMC) et les approches basées sur des approximations bayésiennes variationnelles (VBA).La thèse est composée de deux parties. La première partie concerne les algorithmes d'échantillonnage. Dans un premier temps, une attention particulière est consacrée à l'amélioration des méthodes MCMC basées sur la discrétisation de la diffusion de Langevin. Nous proposons une nouvelle méthode pour régler la composante directionnelle de tels algorithmes en utilisant une stratégie de Majoration-Minimisation ayant des propriétés de convergence garanties. Les résultats expérimentaux obtenus lors de la restauration d'un signal parcimonieux confirment la rapidité de cette nouvelle approche par rapport à l'échantillonneur usuel de Langevin. Dans un second temps, une nouvelle méthode d'échantillonnage basée sur une stratégie d'augmentation des données est proposée pour améliorer la vitesse de convergence et les propriétés de mélange des algorithmes d'échantillonnage standards. L'application de notre méthode à différents exemples en traitement d'images montre sa capacité à surmonter les difficultés liées à la présence de corrélations hétérogènes entre les coefficients du signal.Dans la seconde partie de la thèse, nous proposons de recourir aux techniques VBA pour la restauration de signaux dégradés par un bruit non-gaussien. Afin de contourner les difficultés liées à la forme compliquée de la loi a posteriori, une stratégie de majoration est employée pour approximer la vraisemblance des données ainsi que la densité de la loi a priori. Grâce à sa flexibilité, notre méthode peut être appliquée à une large classe de modèles et permet d'estimer le signal d'intérêt conjointement au paramètre de régularisation associé à la loi a priori. L'application de cette approche sur des exemples de déconvolution d'images en présence d'un bruit mixte Poisson-gaussien, confirme ses bonnes performances par rapport à des méthodes supervisées de l'état de l'art. / Bayesian approaches are widely used in signal processing applications. In order to derive plausible estimates of original parameters from their distorted observations, they rely on the posterior distribution that incorporates prior knowledge about the unknown parameters as well as informations about the observations. The posterior mean estimator is one of the most commonly used inference rule. However, as the exact posterior distribution is very often intractable, one has to resort to some Bayesian approximation tools to approximate it. In this work, we are mainly interested in two particular Bayesian methods, namely Markov Chain Monte Carlo (MCMC) sampling algorithms and Variational Bayes approximations (VBA).This thesis is made of two parts. The first one is dedicated to sampling algorithms. First, a special attention is devoted to the improvement of MCMC methods based on the discretization of the Langevin diffusion. We propose a novel method for tuning the directional component of such algorithms using a Majorization-Minimization strategy with guaranteed convergence properties.Experimental results on the restoration of a sparse signal confirm the performance of this new approach compared with the standard Langevin sampler. Second, a new sampling algorithm based on a Data Augmentation strategy, is proposed to improve the convergence speed and the mixing properties of standard MCMC sampling algorithms. Our methodological contributions are validated on various applications in image processing showing the great potentiality of the proposed method to manage problems with heterogeneous correlations between the signal coefficients.In the second part, we propose to resort to VBA techniques to build a fast estimation algorithm for restoring signals corrupted with non-Gaussian noise. In order to circumvent the difficulties raised by the intricate form of the true posterior distribution, a majorization technique is employed to approximate either the data fidelity term or the prior density. Thanks to its flexibility, the proposed approach can be applied to a broad range of data fidelity terms allowing us to estimate the target signal jointly with the associated regularization parameter. Illustration of this approach through examples of image deconvolution in the presence of mixed Poisson-Gaussian noise, show the good performance of the proposed algorithm compared with state of the art supervised methods.
|
3 |
Factor analysis of dynamic PET imagesCruz Cavalcanti, Yanna 31 October 2018 (has links)
La tomographie par émission de positrons (TEP) est une technique d'imagerie nucléaire noninvasive qui permet de quantifier les fonctions métaboliques des organes à partir de la diffusion d'un radiotraceur injecté dans le corps. Alors que l'imagerie statique est souvent utilisée afin d'obtenir une distribution spatiale de la concentration du traceur, une meilleure évaluation de la cinétique du traceur est obtenue par des acquisitions dynamiques. En ce sens, la TEP dynamique a suscité un intérêt croissant au cours des dernières années, puisqu'elle fournit des informations à la fois spatiales et temporelles sur la structure des prélèvements de traceurs en biologie \textit{in vivo}. Les techniques de quantification les plus efficaces en TEP dynamique nécessitent souvent une estimation de courbes temps-activité (CTA) de référence représentant les tissus ou une fonction d'entrée caractérisant le flux sanguin. Dans ce contexte, de nombreuses méthodes ont été développées pour réaliser une extraction non-invasive de la cinétique globale d'un traceur, appelée génériquement analyse factorielle. L'analyse factorielle est une technique d'apprentissage non-supervisée populaire pour identifier un modèle ayant une signification physique à partir de données multivariées. Elle consiste à décrire chaque voxel de l'image comme une combinaison de signatures élémentaires, appelées \textit{facteurs}, fournissant non seulement une CTA globale pour chaque tissu, mais aussi un ensemble des coefficients reliant chaque voxel à chaque CTA tissulaire. Parallèlement, le démélange - une instance particulière d'analyse factorielle - est un outil largement utilisé dans la littérature de l'imagerie hyperspectrale. En imagerie TEP dynamique, elle peut être très pertinente pour l'extraction des CTA, puisqu'elle prend directement en compte à la fois la non-négativité des données et la somme-à-une des proportions de facteurs, qui peuvent être estimées à partir de la diffusion du sang dans le plasma et les tissus. Inspiré par la littérature de démélange hyperspectral, ce manuscrit s'attaque à deux inconvénients majeurs des techniques générales d'analyse factorielle appliquées en TEP dynamique. Le premier est l'hypothèse que la réponse de chaque tissu à la distribution du traceur est spatialement homogène. Même si cette hypothèse d'homogénéité a prouvé son efficacité dans plusieurs études d'analyse factorielle, elle ne fournit pas toujours une description suffisante des données sousjacentes, en particulier lorsque des anomalies sont présentes. Pour faire face à cette limitation, les modèles proposés ici permettent un degré de liberté supplémentaire aux facteurs liés à la liaison spécifique. Dans ce but, une perturbation spatialement variante est introduite en complément d'une CTA nominale et commune. Cette variation est indexée spatialement et contrainte avec un dictionnaire, qui est soit préalablement appris ou explicitement modélisé par des non-linéarités convolutives affectant les tissus de liaisons non-spécifiques. Le deuxième inconvénient est lié à la distribution du bruit dans les images PET. Même si le processus de désintégration des positrons peut être décrit par une distribution de Poisson, le bruit résiduel dans les images TEP reconstruites ne peut généralement pas être simplement modélisé par des lois de Poisson ou gaussiennes. Nous proposons donc de considérer une fonction de coût générique, appelée $\beta$-divergence, capable de généraliser les fonctions de coût conventionnelles telles que la distance euclidienne, les divergences de Kullback-Leibler et Itakura-Saito, correspondant respectivement à des distributions gaussiennes, de Poisson et Gamma. Cette fonction de coût est appliquée à trois modèles d'analyse factorielle afin d'évaluer son impact sur des images TEP dynamiques avec différentes caractéristiques de reconstruction. / Thanks to its ability to evaluate metabolic functions in tissues from the temporal evolution of a previously injected radiotracer, dynamic positron emission tomography (PET) has become an ubiquitous analysis tool to quantify biological processes. Several quantification techniques from the PET imaging literature require a previous estimation of global time-activity curves (TACs) (herein called \textit{factors}) representing the concentration of tracer in a reference tissue or blood over time. To this end, factor analysis has often appeared as an unsupervised learning solution for the extraction of factors and their respective fractions in each voxel. Inspired by the hyperspectral unmixing literature, this manuscript addresses two main drawbacks of general factor analysis techniques applied to dynamic PET. The first one is the assumption that the elementary response of each tissue to tracer distribution is spatially homogeneous. Even though this homogeneity assumption has proven its effectiveness in several factor analysis studies, it may not always provide a sufficient description of the underlying data, in particular when abnormalities are present. To tackle this limitation, the models herein proposed introduce an additional degree of freedom to the factors related to specific binding. To this end, a spatially-variant perturbation affects a nominal and common TAC representative of the high-uptake tissue. This variation is spatially indexed and constrained with a dictionary that is either previously learned or explicitly modelled with convolutional nonlinearities affecting non-specific binding tissues. The second drawback is related to the noise distribution in PET images. Even though the positron decay process can be described by a Poisson distribution, the actual noise in reconstructed PET images is not expected to be simply described by Poisson or Gaussian distributions. Therefore, we propose to consider a popular and quite general loss function, called the $\beta$-divergence, that is able to generalize conventional loss functions such as the least-square distance, Kullback-Leibler and Itakura-Saito divergences, respectively corresponding to Gaussian, Poisson and Gamma distributions. This loss function is applied to three factor analysis models in order to evaluate its impact on dynamic PET images with different reconstruction characteristics.
|
4 |
Algorithmes d'optimisation en grande dimension : applications à la résolution de problèmes inverses / Large scale optimization algorithms : applications to solution of inverse problemsRepetti, Audrey 29 June 2015 (has links)
Une approche efficace pour la résolution de problèmes inverses consiste à définir le signal (ou l'image) recherché(e) par minimisation d'un critère pénalisé. Ce dernier s'écrit souvent sous la forme d'une somme de fonctions composées avec des opérateurs linéaires. En pratique, ces fonctions peuvent n'être ni convexes ni différentiables. De plus, les problèmes auxquels on doit faire face sont souvent de grande dimension. L'objectif de cette thèse est de concevoir de nouvelles méthodes pour résoudre de tels problèmes de minimisation, tout en accordant une attention particulière aux coûts de calculs ainsi qu'aux résultats théoriques de convergence. Une première idée pour construire des algorithmes rapides d'optimisation est d'employer une stratégie de préconditionnement, la métrique sous-jacente étant adaptée à chaque itération. Nous appliquons cette technique à l'algorithme explicite-implicite et proposons une méthode, fondée sur le principe de majoration-minimisation, afin de choisir automatiquement les matrices de préconditionnement. L'analyse de la convergence de cet algorithme repose sur l'inégalité de Kurdyka-L ojasiewicz. Une seconde stratégie consiste à découper les données traitées en différents blocs de dimension réduite. Cette approche nous permet de contrôler à la fois le nombre d'opérations s'effectuant à chaque itération de l'algorithme, ainsi que les besoins en mémoire, lors de son implémentation. Nous proposons ainsi des méthodes alternées par bloc dans les contextes de l'optimisation non convexe et convexe. Dans le cadre non convexe, une version alternée par bloc de l'algorithme explicite-implicite préconditionné est proposée. Les blocs sont alors mis à jour suivant une règle déterministe acyclique. Lorsque des hypothèses supplémentaires de convexité peuvent être faites, nous obtenons divers algorithmes proximaux primaux-duaux alternés, permettant l'usage d'une règle aléatoire arbitraire de balayage des blocs. L'analyse théorique de ces algorithmes stochastiques d'optimisation convexe se base sur la théorie des opérateurs monotones. Un élément clé permettant de résoudre des problèmes d'optimisation de grande dimension réside dans la possibilité de mettre en oeuvre en parallèle certaines étapes de calculs. Cette parallélisation est possible pour les algorithmes proximaux primaux-duaux alternés par bloc que nous proposons: les variables primales, ainsi que celles duales, peuvent être mises à jour en parallèle, de manière tout à fait flexible. A partir de ces résultats, nous déduisons de nouvelles méthodes distribuées, où les calculs sont répartis sur différents agents communiquant entre eux suivant une topologie d'hypergraphe. Finalement, nos contributions méthodologiques sont validées sur différentes applications en traitement du signal et des images. Nous nous intéressons dans un premier temps à divers problèmes d'optimisation faisant intervenir des critères non convexes, en particulier en restauration d'images lorsque l'image originale est dégradée par un bruit gaussien dépendant du signal, en démélange spectral, en reconstruction de phase en tomographie, et en déconvolution aveugle pour la reconstruction de signaux sismiques parcimonieux. Puis, dans un second temps, nous abordons des problèmes convexes intervenant dans la reconstruction de maillages 3D et dans l'optimisation de requêtes pour la gestion de bases de données / An efficient approach for solving an inverse problem is to define the recovered signal/image as a minimizer of a penalized criterion which is often split in a sum of simpler functions composed with linear operators. In the situations of practical interest, these functions may be neither convex nor smooth. In addition, large scale optimization problems often have to be faced. This thesis is devoted to the design of new methods to solve such difficult minimization problems, while paying attention to computational issues and theoretical convergence properties. A first idea to build fast minimization algorithms is to make use of a preconditioning strategy by adapting, at each iteration, the underlying metric. We incorporate this technique in the forward-backward algorithm and provide an automatic method for choosing the preconditioning matrices, based on a majorization-minimization principle. The convergence proofs rely on the Kurdyka-L ojasiewicz inequality. A second strategy consists of splitting the involved data in different blocks of reduced dimension. This approach allows us to control the number of operations performed at each iteration of the algorithms, as well as the required memory. For this purpose, block alternating methods are developed in the context of both non-convex and convex optimization problems. In the non-convex case, a block alternating version of the preconditioned forward-backward algorithm is proposed, where the blocks are updated according to an acyclic deterministic rule. When additional convexity assumptions can be made, various alternating proximal primal-dual algorithms are obtained by using an arbitrary random sweeping rule. The theoretical analysis of these stochastic convex optimization algorithms is grounded on the theory of monotone operators. A key ingredient in the solution of high dimensional optimization problems lies in the possibility of performing some of the computation steps in a parallel manner. This parallelization is made possible in the proposed block alternating primal-dual methods where the primal variables, as well as the dual ones, can be updated in a quite flexible way. As an offspring of these results, new distributed algorithms are derived, where the computations are spread over a set of agents connected through a general hyper graph topology. Finally, our methodological contributions are validated on a number of applications in signal and image processing. First, we focus on optimization problems involving non-convex criteria, in particular image restoration when the original image is corrupted with a signal dependent Gaussian noise, spectral unmixing, phase reconstruction in tomography, and blind deconvolution in seismic sparse signal reconstruction. Then, we address convex minimization problems arising in the context of 3D mesh denoising and in query optimization for database management
|
5 |
Recherche de pas par Majoration-Minoration. Application à la résolution de problèmes inverses.Chouzenoux, Emilie 08 December 2010 (has links) (PDF)
La solution des problèmes inverses en traitement du signal et de l'image est souvent définie comme le minimiseur d'un critère pénalisé qui prend en compte conjointement les observations et les informations préalables. Ce travail de thèse s'intéresse à la minimisation des critères pénalisés différentiables. Nous discutons plus précisément de la mise en oeuvre algorithmique de l'étape de recherche de pas dans l'algorithme de descente itérative. Les travaux de thèse de Christian Labat [Labat06] ont mené à l'élaboration de la stratégie de pas par Majoration-Minoration quadratique (MMQ 1D). Cette stratégie se démarque des méthodes de pas standards par sa simplicité d'implémentation et ses propriétés de convergence lorsqu'elle est associée à l'algorithme du gradient conjugué non linéaire (GCNL). Nous étendons ces propriétés à la famille des algorithmes à gradient relié. Nous montrons de plus que l'approche MMQ 1D s'étend en une stratégie de pas multi-dimensionnelle MMQ rD assurant la convergence d'algorithmes de sous-espace. Nous illustrons expérimentalement en déconvolution d'image que l'algorithme de super mémoire de gradient SMG + MMQ 2D est préférable à l'algorithme de gradient conjugué non linéaire GCNL + MMQ 1D. Lorsque le critère pénalisé contient une barrière, c'est-à-dire une fonction dont le gradient est non borné, la procédure de pas MMQ est inapplicable. Nous développons une stratégie de pas tenant compte de la singularité de la barrière à travers des approximations majorantes quadratiques augmentées d'un terme logarithmique. La recherche de pas résultante, notée MMLQ 1D, est simple à mettre en \oe{}uvre et garantit la convergence des algorithmes standards de descente itérative. Nous montrons expérimentalement que la méthode MMLQ 1D accroît les performances de l'algorithme de point intérieur primal pour la programmation quadratique. Nous appliquons enfin cette approche à la reconstruction de spectres RMN bi-dimensionnels par maximum d'entropie.
|
6 |
Théorèmes d'existence pour des systèmes d'équations différentielles et d'équations aux échelles de temps.Gilbert, Hugues 10 1900 (has links)
Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes
d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa-
tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des
systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer-
taines conditions aux limites.
Dans le chapitre trois, nous introduirons une notion de tube-solution pour
obtenir des théorèmes d’existence pour des systèmes d’équations différentielles
du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de
sous- et sur-solutions pour le problème aux limites de l’équation différentielle du
troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous
traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois-
sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel
système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat
d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34].
Le chapitre suivant porte sur l’existence de solutions pour deux types de sys-
tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis-
tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution
adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes
et à une échelle de temps quelconque, un résultat obtenu pour des équations aux
différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte-
nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir
l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de
ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60].
Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in-
clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun
résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes
d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le
domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore
une fois à l’aide d’une hypothèse de tube-solution adaptée au problème.
Au chapitre six, nous traitons l’existence de solutions pour des systèmes
d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence
que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse
que ces auteurs utilisent pour faire la majoration a priori est un cas particulier
de notre hypothèse de tube-solution pour ce type de systèmes. Notons également
que notre définition de tube-solution généralise aux systèmes les notions de sous-
et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi,
nous généralisons également des résultats obtenus pour des équations aux échelles
de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis-
tence pour un système dont le membre droit des équations dépend de la ∆-dérivée
de la fonction. / In this thesis, we present existence theorems for systems of third order nonli-
near differential equations, for systems of first order nonlinear time scales equa-
tions and inclusions and for systems of second order nonlinear time scales equa-
tions under some boundary conditions. In chapter three, we introduce a concept
of solution-tube to get existence theorems for systems of third order differential
equations. This new definition generalizes to systems the notions of lower- and
upper-solution to third order differential equations introduced in [34]. In the last
part of this chapter, we study third order systems when the right member f sa-
tisfies a Wintner-Nagumo growth condition. To obtain an existence result in this
case, we use the theory of differential inclusions. This result generalizes in many
ways a theorem due to Grossinho and Minhós [34].
The next chapter concerns the existence of solutions for two kind of systems of
first order time scales equations. Existence results for these problems are obtained
with new notions of solution-tube adapted to these systems. Our first theorem ge-
neralizes to systems and to an arbitrary time scale a result for difference equations
due to Mawhin and Bereanu [9]. Our result permits to deduce the existence of so-
lutions for systems which could not be treated in a result of Dai and Tisdell [17].
The second theorem of this chapter generalizes under few conditions some results
of [60]. The fifth chapter presents a new existence theorem for a system of first
order time scales inclusions. As far as we know, there is no result in the littera-
ture for this kind of system of inclusions. Therefore, this chapter opens new doors
in the branch of time scales inclusions. Again, our new result is obtained with
the introduction of an hypothesis of solution-tube adapted to the problem studied.
In the last chapter, existence of solutions for systems of second order time
scales equations are obtained. The first result of this chapter generalizes theo-
rems of [36] since the hypothesis used by these authors to get a priori bounds
for solutions is a particular case of our definition of solution-tube for this type
of problems. Let us mention also that our notion of solution-tube generalizes to
systems the definitions of lower- and upper-solution used for second order time
scales equations by [4] and [55]. We also generalize to systems, results obtained
for second order time scales equations. Finally, we conclude this chapter with a
new existence result for systems of second order time scales equations with a right
member depending on the ∆-derivative.
|
7 |
Théorèmes d'existence pour des systèmes d'équations différentielles et d'équations aux échelles de tempsGilbert, Hugues 10 1900 (has links)
No description available.
|
Page generated in 0.0604 seconds