• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A component-based approach to design and construction of change capable manufacturing cell control systems

Monfared, Radmehr Pourtafreshi January 2000 (has links)
Business goals of manufacturing systems are typically in a state of constant change and greater rates of change are predicted in the future. Whereas contemporary approaches to the design and construction of these systems often results in inflexible enterprises that cannot readily be tuned to changing business goals. This study has specified and prototyped the use of a new model-driven approach to the design and (re)configuration of"change capable" manufacturing cells. Manufacturing cells represent a typical domain of manufacturing systems in which the existence of inflexible links between tasks and resources can result in sub-optimal performance and an inability to cope with change. The approach is based on a) the use of a semi-generic model of manufacturing cells, that structures and targets the use of CIMOSA modelling constructs (as implemented by the SEWOSA tool) towards producing a requirements specification and conceptual design in the form of a graphical and computer executable model of a particular manufacturing cell, and b) the complementary use of new computer executable modelling constructs and tools, that structure and support the detailed design and runtime operation of a particular cell in the form of an explicit, model-based configuration of cell resources and software components that realise the control processes required in a particular cell. Part of the semi-generic model comprises descriptions of common tasks found in a given domain of manufacturing cells. That part of the model has been captured and formalised by using CIMOSA modelling constructs. A new development of this modelling structure allows pre- modelled tasks to be selected, detailed and organised and suitable resources and reusable control system components (or building blocks) assigned to groups of tasks. Thereby this new approached to designing and building manufacturing cells can facilitate rapid and effective design and reconfiguration of manufacturing cell control systems. General information requirements found during the modelling and real world application of target cells, have also been formally defined and are met by using a suitable modelling structure and specially developed tools. Furthermore, the research has shown how modelled sets of software component building blocks can be specified and implemented as modular, reusable elements of manufacturing cell control systems. New modelling structures have been conceived and fonnalised and examples of their use evaluated under laboratory conditions. The research has also deployed and developed pre-existing enterprise modelling concepts and integration tools, including CIMOSA, STEP, EXPRESS, CIMBIOSYS infrastructure services and component-based software design concepts. This has enable the creation of a prototype tool-set that demonstrates how the concepts can be beneficially applied. The main contributions made by this research are that: a) It proposes and develops an approach to the design of manufacturing cell systems that successfully bridges a previous gap between top-down modelling concepts, methods and tools (that typically support formal modelling of system requirements, tasks and resources) and bottom-up detailed design and build techniques that lead to the operation, control and monitoring of real cells, b) It provides a modelling and implementation structure that 'integrates' the use of a classical enterprise modelling approach (namely CIMOSA), design primarily to support the designers of manufacturing systems, to the emerging component-based design and build concepts, that are becoming popular with software and system vendors.
22

Development Of A Web-based Manufacturing Application System For Rotational Parts

Ozsuer, Erhan 01 December 2003 (has links) (PDF)
Developing process plans and part programs rapidly and correctly for CNC machine tools plays a vital role in manufacturing. This study is concerned with the development of a web-enabled virtual design and manufacturing application system for rotational parts. The object oriented methodology is used in the application development. Windows Distributed interNet Application (DNA) architecture which describes a framework of building software technologies in an integrated web and client-server model of computing, is employed in the system. The entire system was modeled with Unified Modeling Language (UML), which is an industry-standard visual modeling notation to express software development architectures. Feature-based design approach, being a practical way of linking the design with manufacturing, is implemented in the rotational part design. Users have to be registered in order to use the system. With the supplied web site, users can easily register to system. After registration, the user obtains a password and a unique username. Upon the user authentication, the user session starts. A typical user session involves new or past project selection, material selection, part sketching, blank size definition and cutting parameters determination. After all the steps are completed, process plan and part-program, which are required to manufacture the part on Denford Mirac CNC Turning Machine are generated and displayed on the web site and then saved to the database. The application enables the users to see past projects and to generate new process plan and part programs for different cutting parameters. The process plan, part program and the 2D wire frame drawing of the corresponding part are demonstrated on the web site for the chosen projects.
23

Stochastic Cellular Manufacturing System Design and Control

Egilmez, Gokhan January 2012 (has links)
No description available.
24

Development of a model for performance measurement in just-in-time enabled manufacturing environments

Sandanayake, Yasangika Gayani January 2009 (has links)
In this era of globalisation and fierce competition amongst businesses, there is a need to improve advanced operations management philosophies such as just-in-time (JIT) manufacturing to enhance business performance. Literature review shows that there is no mechanism so far to identify key JIT drivers relevant to a given organisation and its production processes, and their impact on enterprise performance. The research carried out here therefore involved the development of a generic performance measurement model to identify and capture the influence of JIT practices on enterprise performance. A conceptual performance measurement model, which was designed based on comprehensive literature review and informal interviews/discussions with both academic researchers and industry practitioners describes the link between JIT drivers (Xi) and measurable performance (Y). This mathematically determined model is aimed at assisting managers in the systematic identification of the influence of key JIT drivers on enterprise performance using a multidimensional tool such as the extended balanced scorecard. The case study approach was selected as the most suitable methodology for testing and validating the conceptual model in JIT enabled production plant and was applied to the production process of Denso Manufacturing (UK) Ltd., a global automotive component manufacturer. A novel eight-step implementation procedure was designed to collect data, which were analysed and validated by design of experiments, linear mathematical modelling, computer based dynamic simulation and analytic hierarchy process tool. The performance measurement model was then successfully applied to a non-automotive component production plant (Risane Ltd.). In conclusion, the performance measurement model can now be suitably applied to JIT enabled manufacturing environments using relevant organisation specific JIT drivers and key performance indicators to optimise system performance. The contribution to knowledge is an innovative, user friendly, robust and multidimensional performance measurement model enabling industry practitioners to optimise JIT processes with substantial performance enhancement. The model could also be applied by future researchers to other operations management philosophies and industries, and at a higher level could be developed into a self-optimising software package, which will enable rapid determination of the key control parameters needed to optimise process performance just in time.
25

Organic structures for manufacturing support services : the role of affective commitment

Jaaron, Ayham A. M. January 2010 (has links)
Manufacturing support services, operating as call centres, are one of the fastest growing and preferred means of service delivery in today's ever-changing manufacturing environment. The call centre has a significant potential to provide support to manufacturing organizations with business intelligence captured during contacts with customers. Research has shown that affective commitment is of particular significance in the workplace since this has been found to have the greatest impact on individuals performance, on-work behaviour and ultimately organisational effectiveness (Porter, Steers & Boulian 1974, Sung 2007, Shum 2008, Herscovitch 2002, Gong 2009). Meyer and Allen (1991) define affective commitment as a measure of the employee's emotional attachment to the organisation, the strength of identification with the goals of the organisation and strength of commitment to its success and continuous improvement. However, call centres are mechanistic structure models represented by close monitoring of words, stressful working loads, emotional exhaustion and burnout, and minor empowerment of employees. As a result employees lack affective commitment which detrimentally influences the service quality and has consequences such as high employee turnover and low customer satisfaction. Mechanistic structures are inward oriented structures that must be shielded from the environment but call centres are outward-facing entities. This firmly implies that call centres must be given a certain form of organic structure that will stimulate affective commitment building among employees and improve work conditions. This study aims to identify that by the implementation of an organic structure, through a systems engineering approach, to the design of manufacturing support services, the affective commitment of front-line employees will significantly increase, and due to that significant, but often counter-intuitive, benefits can be created. Conducted on a multiple-case design, three organisations were selected in this research study to collect both qualitative and quantitative data. Results were analysed for each case individually before it was analysed on inter-case basis. This has been done to show differences and similarities in patterns of data across the case studies. Results from the research show that structuring call centres around the principles of systems thinking will produce an organically structured support services department that will improve employees working conditions, and will formally institute the integration of call centre with other business units in the manufacturing organisation. The cross-case comparison revealed significant improvement in employees affective commitment level using organic structure when contrasted with employees working under mechanistic structure designs. It was revealed that by leveraging employee s affective commitment that significant benefits can be created at different levels in the organisation; an employee s level, managerial level, customer level, and the overall business level. A novel methodology for organic structures implementation, as a value creating model, was formulated. The emerged methodology consists of six major tasks and a decision making criteria. Results from this research indicate that there is a need for manufacturing organisations to structure their support services departments following organic structures that could provide a rewarding working experience for their employees while achieving organisational goals. The study makes an explicit practical contribution for manufacturing organisations in the selection of proper support service design and contribute substantially to the theory about manufacturing support services structures and management.
26

Using the Collective System Design Approach to Facilitate a Sustainable Manufacturing System

Shahab Shah (5931203) 07 May 2019 (has links)
<div>Reviewing the literature verifies that manufacturing industries fall short of the required sustainable criteria in the system design.</div><div>One of the leading reasons behind such a failure refers to the lack of an effective system design's knowledge toward the selected solutions by benchmarking.</div><div>The Collective System Design (CSD) approach provides a countermeasure for this shortcoming by starting the design approach with a collective agreement upon the external and internal customer needs and then choosing the solutions for the system design to achieve those needs. </div><div>The general requirements and solutions to a manufacturing system are covered in the Manufacturing System Design Decomposition (MSDD) in a linear and path-dependent fashion, which is a core derivative of the CSD.</div><div><br></div><div>The CSD application in industrial case studies has been provided in this thesis to elaborate on how the CSD approach assists industries to re-design their systems in a sustainable manner.</div><div>The segregation of the tools and objectives of the system re-design in a path-dependent fashion is guided by the design principles.</div><div>The case studies described how to achieve the external customer needs of product quality, quantity, variety, and on-time delivery with a collaborative work inside the plant. </div><div>This collaboration was built up by defining the customer-supplier connection inside the plant.</div><div>Cell re-design and balancing of operations with a well-defined standard work is also elaborated in this research to help produce what is needed to be shipped today with the least amount of waste in the system.</div><div>The after system redesign MSDD questionnaire analysis at these industries have shown that the industries successfully satisfied their system needs in a sustainable manner. </div><div><br></div><div>In those case studies, an internal customer need for a safe working environment was also brought to light and the CSD approach was introduced and applied to achieve the associated requirements of safety. </div><div>As the original MSDD lacked the requirements and solutions for the safety component, an updated version of the MSDD has been proposed to incorporate </div><div>the safety branch to the MSDD.</div><div>In addition, some enhancements to the current version of the MSDD have been made for a clearer and more thorough understanding of the system design.</div>
27

Modeling and Analysis of Production and Capacity Planning Considering Profits, Throughputs, Cycle Times, and Investment

Sohn, SugJe 12 July 2004 (has links)
This research focuses on large-scale manufacturing systems having a number of stations with multiple tools and product types with different and deterministic processing steps. The objective is to determine the production quantities of multiple products and the tool requirements of each station that maximizes net profit while satisfying strategic constraints such as cycle times, required throughputs, and investment. The formulation of the problem, named OptiProfit, is a mixed-integer nonlinear programming (MINLP) with the stochastic issues addressed by mean-value analysis (MVA) and queuing network models. Observing that OptiProfit is an NP-complete, nonconvex, and nonmonotonic problem, the research develops a heuristic method, Differential Coefficient Based Search (DCBS). It also performs an upper-bound analysis and a performance comparison with six variations of Greedy Ascent Procedure (GAP) heuristics and Modified Simulated Annealing (MSA) in a number of randomized cases. An example problem based on a semiconductor manufacturing minifab is modeled as an OptiProfit problem and numerically analyzed. The proposed methodology provides a very good quality solution for the high-level design and operation of manufacturing facilities.
28

Development of hybrid lifecycle cost estimating tool (hlcet) for manufacturing influenced design tradeoff

Sirirojvisuth, Apinut 21 May 2012 (has links)
In complex aerospace system design, making effective decision requires knowledge from all disciplines, both product and process perspectives. Manufacturing knowledge integration is most valuable during the early phase of the design since designers have more freedom, and design changes are relatively inexpensive. Yet, there is still lack of structured methodology that will allow feedback from the process perspective to show the impact of the design decisions in a quantifiable manner. The major metrics in the design decision as far as process is concerned are cost, time, and manufacturability. To incorporate these considerations in the decision making process without sacrificing agility and flexibility required during conceptual and preliminary design phases, a new set of software analysis tools are proposed. To demonstrate the applicability of this concept, a Hybrid Lifecycle Cost Estimating Tool (HLCET) is developed, and integrated to existing design methodology, Integrated Product and Process Development (IPPD). The ModelCenter suite is used to develop software architecture that seamlessly integrate between product and process analysis tools, and enable knowledge transfer between design phases. HLCET integrates high fidelity estimating techniques like process-based and activity-based into a hierarchical lifecycle cost model to increase the sensitivities of the top-down LCC model to changes or alternatives evaluated at the part or component level where tradeoff is required. Instead of applying arbitrary complexity factor to existing CERs to account for difference material or process selection, high fidelity tool can be used to related product and process parameters specific to the design to generate new result that can then be used to update top-level cost result. This new approach to lifecycle cost estimation allows for a tailored study of individual processes typically required for new and innovative designs. An example of a hypothetical aircraft wing redesign demonstrates the utility of HLCET.
29

Enhanced integrated modelling approach to reconfiguring manufacturing enterprises

Masood, Tariq January 2009 (has links)
No description available.
30

Additive Fertigung frei geformter Betonbauteile durch selektives Binden mit calciumsilikatbasierten Zementen

Weger, Daniel, Talke, Daniel, Lowke, Dirk, Henke, Klaudius, Gehlen, Christoph, Winter, Stefan 21 July 2022 (has links)
Die additive Fertigung erlaubt ein bisher nicht gekanntes Maß an geometrischer Freiheit bei der Gestaltung von Bauteilen. In der Medizin- und Dentaltechnik wird die additive Fertigung beispielsweise eingesetzt, um an die individuelle Anatomie des Patienten angepasste Prothesen und Implantate herzustellen. Im Maschinenwesen ermöglicht sie den Bau von multifunktionalen und formoptimierten Bauteilen und damit eine Senkung des Materialeinsatzes bei gleichzeitiger Steigerung der Leistungsfähigkeit. In der Luft- und Raumfahrttechnik wird sie genutzt, um mittels Topologieoptimierung oder durch das Zusammenfassen von ganzen Baugruppen zu einem einzelnen Bauteil Gewicht zu sparen [1]. (Aus: Motivation] / Additive manufacturing allows a previously unknown degree of geometric freedom in the design of components. In medical and dental technology for example, additive manufacturing is used to produce prostheses and implants adapted to the individual anatomy of the patient. In mechanical engineering, it enables the construction of multifunctional and shape-optimized components thus reducing the amount of material used while simultaneously increasing performance. In aerospace engineering, it is used to save weight by means of topology optimization or by combining entire assemblies into a single component [1]. [Off: Motivation]

Page generated in 0.0795 seconds