Spelling suggestions: "subject:"mapk"" "subject:"sapk""
251 |
Understanding the Role of Androgen Receptor Signaling in Modulating p38-alpha Mitogen-Activated Protein Kinase in Experimental Autoimmune EncephalomyelitisVoorhees, Grace Kathryn 01 January 2019 (has links)
Multiple Sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system, characterized by axonal demyelination and multifocal inflammation. Like many autoimmune diseases, it is a sexually dimorphic disease, being 3-4 times more common in females than in males. p38α MAP kinase (MAPK) has an integral role in modulating inflammatory processes in autoimmunity. Conditionally ablating p38α MAPK in myeloid cells in B6 mice shows a sex difference in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). In the absence of sex hormones, this sex difference was reversed, suggesting a role for sex hormones in modulating p38α MAPK signaling in EAE. Based on these findings, we hypothesized that pro-inflammatory functions in EAE is p38-indepdendent in the presence of androgens and p38-dependent in the presence of estrogens. For the purposes of this project, the role of androgens was evaluated. Both in vivo and in vitro techniques were used to assess how androgen receptor (AR) signaling: 1) impacts EAE pathogenesis, and 2) impacts the role of p38α in EAE pathogenesis and macrophage function. To this end, using Cre-Lox technology, we generated mice deficient in: 1) AR globally or conditionally in macrophages, as well as 2) mice doubly deficient in AR and p38α. In vivo results from p38α-sufficient global AR knockout mice show no effect of global AR deletion on EAE pathogenesis. Surprisingly, results from p38α-sufficient conditional AR knockout mice showed significant worsening in disease compared to WT counterparts, suggesting that AR signaling in myeloid cells has a protective role in EAE pathogenesis. These findings implicate a protective role for AR signaling in EAE. Studies with mice doubly deficient in p38α and AR to determine whether AR regulates the role of p38α in EAE are ongoing, but so far show no effect on AR deletion on the role of p38α MAPK. Further studies with larger cohorts of mice are needed elucidate the relationship between AR and p38α MAPK signaling in myeloid cells in EAE pathogenesis. In vitro studies using the immortalized macrophage cell line RAW 264.7 showed that pharmacologic inhibition of p38 MAPK after stimulation with LPS reduced the production of classic pro-inflammatory cytokines IL-6 and TNFα, and effect that was not affected by treatment with 5-dihydrotestosterone, suggesting that the AR does not modulate the role of p38α in cytokine production. These findings implicate no direct role of AR signaling on the functional role of p38α MAPK in the myeloid cell lineage in inflammatory and autoimmune responses.
|
252 |
プラナリアの再生におけるMAPKシグナル経路の機能解析細田, 和孝 23 May 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19884号 / 理博第4211号 / 新制||理||1605(附属図書館) / 32961 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 杤尾 豪人, 教授 高田 彰二, 教授 青山 卓史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
253 |
Epigenetic Regulation of the Human Angiotensinogen by Single Nucleotide PolymorphismsPerla, Sravan K. January 2018 (has links)
No description available.
|
254 |
Novel Mechanisms Impacting MAPK and CREB Signaling in the Mammalian Suprachiasmatic NucleusWheaton, Kelin LaRue 08 October 2018 (has links)
No description available.
|
255 |
Examining MPS1-dependent Centrosome Amplification in CancerThomas, Jennifer Lynn January 2021 (has links)
No description available.
|
256 |
Systems Biology Analysis of Macrophage Foam Cells: Finding a Novel Function for Peroxiredoxin IConway, James Patrick January 2007 (has links)
No description available.
|
257 |
Activin A Reduces Brain Injury After StrokeMukerji, Shibani Sharon 10 January 2009 (has links)
No description available.
|
258 |
The Role of Podocalyxin in Breast and Prostate Cancer AggressivenessSizemore, Steven T. 30 September 2008 (has links)
No description available.
|
259 |
Menin Regulates Oxidative Stress Through Heme Oxygenase-1 and the p38 MAPK PathwayAngevine, Kristine R. January 2012 (has links)
No description available.
|
260 |
Uncovering the complexity of muscular dystrophy pathology through disease signalingWissing, Erin R. 17 October 2014 (has links)
No description available.
|
Page generated in 0.0262 seconds