Spelling suggestions: "subject:"bondmaterialien"" "subject:"bodenmaterialien""
91 |
Unveiling the double-well energy landscape in a ferroelectric layerHoffmann, Michael, Fengler, Franz P. G., Herzig, Melanie, Mittmann, Terence, Max, Benjamin, Schroeder, Uwe, Negrea, Raluca, Lucian, Pinitilie, Slesazeck, Stefan, Mikolajick, Thomas 17 October 2022 (has links)
The properties of ferroelectric materials, which were discovered almost a century ago¹ , have led to a huge range of applications, such as digital information storage² , pyroelectric energy conversion³ and neuromorphic computing⁴⁻⁵ . Recently, it was shown that ferroelectrics can have negative capacitance⁶⁻¹¹, which could improve the energy efficiency of conventional electronics beyond fundamental limits¹²⁻¹⁴. In Landau–Ginzburg–Devonshire theory¹⁵⁻¹⁷, this negative capacitance is directly related to the doublewell shape of the ferroelectric polarization–energy landscape, which was thought for more than 70 years to be inaccessible to experiments¹⁸. Here we report electrical measurements of the intrinsic double-well energy landscape in a thin layer of ferroelectric Hf₀.₅Zr₀.₅O₂. To achieve this, we integrated the ferroelectric into a heterostructure capacitor with a second dielectric layer to prevent immediate screening of polarization charges during switching. These results show that negative capacitance has its origin in the energy barrier in a double-well landscape. Furthermore, we demonstrate that ferroelectric negative capacitance can be fast and hysteresis-free, which is important for prospective applications¹⁹. In addition, the Hf₀.₅Zr₀.₅O₂ used in this work is currently the most industry-relevant ferroelectric material, because both HfO₂ and ZrO₂ thin films are already used in everyday electronics²⁰. This could lead to fast adoption of negative capacitance effects in future products with markedly improved energy efficiency.
|
92 |
Edelmetall beladene Indiumoxid Aerogelkatalysatoren für die Methanol DampfreformierungThoni, Lukas Johannes 20 November 2023 (has links)
Im Zentrum dieser Dissertation stehen die Systeme von Platin und Palladium beladenen Indiumoxid-Aerogelen hinsichtlich ihrer Anwendbarkeit als Katalysatoren für die Methanol-Dampfreformierung. Diese Reaktion ermöglicht aus der Umsetzung von Wasser und Methanol die Produktion von Wasserstoff für Brennstoffzellen und kann so einen Beitrag für eine nachhaltigere Energiewirtschaft leisten. Methanol reiht sich in eine Kandidatenliste der aussichtsreichsten Speichermoleküle für elektrische Energie in chemischen Bindungen ein. Im ersten Schritt wird dazu zunächst Wasserstoff aus Stromüberschüssen von erneuerbaren Energien gewonnen. Eine effiziente Einspeicherung und Freisetzung von Wasserstoff in Methanol im Kreislauf wird jedoch nur in Kombination mit Hochleistungskatalysatoren vorstellbar. Diese unterdrücken Nebenprodukte, beeinflussen das Reaktionsgleichgewicht und können so die gewünschten Reaktionen effizienter machen. Aus diesem Grund werden in dieser Arbeit die Konzepte des Einsatzes von Aerogelkatalysatoren beleuchtet und diskutiert.
Zunächst werden Aerogele untersucht, welche über eine Epoxid-assistierte Gelierung synthethisiert wurden. Dem gegenüber gestellt werden Aerogele, welche über eine neu entwickelte wässrige Syntheseroute hergestellt werden konnten. Über die Epoxidmethode und die wässrige Synthese konnten Aerogele mit Stegbreiten um 5 nm und Oberflächen bis zu 200 m2 g-1 hergestellt werden. Es konnte gezeigt werden, dass über die wässrige Synthese reine Indiumoxid Aerogele mit vergleichbaren Eigenschaften erzeugt werden können.
Am Beispiel der wässrigen Synthese werden anschließend die Ergebnisse zum Experiment Design über Bayesianische Optimierung erläutert. Mittels dieser Maschinen gestützten Methodik konnte das Verständnis von Einflussparameter wie Salzen, Temperatur, Nichtlösungsmitteln und Stabilistoren weiter gefördert werden. Ebenso konnten Einblicke in diese noch jüngere Methodik der Experimentplanung gewonnen werden.
Die Einführung von Trägermaterialien wurde in dieser Arbeit am Beispiel von meso- und makroporösem Silica gezeigt. Zur Beladung wurden auch hier neue Wege in der Methode über Aggregate aus Zinkoxid und Palladium Nanopartikeln eingeschlagen. Weiterhin haben Trägermaterialien ebenfalls das Potenzial den finalen Katalysatorpreis zu senken und die Temperaturstabilität bei gleichzeitigem Erhalten von spezifischen Oberflächen von bis zu 450 m2 g-1 weiter zu erhöhen.
Obwohl Aerogele nun schon länger als Wundermaterialien gelten, wurde der breite Einsatz in größerem Maßstabe durch die aufwendige Trocknungstechnik eingeschränkt. Dieser Sachverhalt wird untersucht, indem unterschiedliche Trocknungstechniken gegenübergestellt werden, um deren Praktikabilität und Einfluss auf Platin beladene Indiumoxid-Aerogele zu diskutieren. Über die Versuche von verschiedenen Trocknungsmethoden konnte gezeigt werden, dass die Trocknung über Verdampfung bei Umgebungsbedingungen mit der klassischen superkritischen Trocknung konkurrieren kann. Für eine Katalysatorentwicklung bedeutet dies eine verbesserte Wirtschaftlichkeit, sowie eine größere Skalierbarkeit im Trocknungsschritt, welcher ansonsten durch Autoklaventechnik begrenzt ist. Da die Möglichkeiten der Trocknung jedoch im Zusammenhang mit dem Material des Gels und der Stabilität dessen befinden, kann daraus kein universeller Schluss für andere Gelsysteme gezogen werden.
Zum Einsatz als Katalysator bedarf es schließlich noch einiger Vorbehandlungsschritte, welche bezüglich reiner Indiumoxid-Aerogele und im Kontext der mit Platin und Palladium beladenen Indiumoxid-Aerogele detaillierter beleuchtet werden. Dabei wird hauptsächlich der Einfluss der Temperatur in Kombination mit oxidativer oder reduktiver Atmosphäre auf die Struktur und Oberfläche der Proben untersucht. Final wird der Einsatz der Aerogelkatalysatoren im Reaktor der Methanol-Dampfreformierung beleuchtet, welcher von Kooperationspartnern des Instituts „Materialien für innovative Energiekonzepte“ unter der Leitung von Prof. Marc Armbrüster der TU Chemnitz durchgeführt wurde. In der Temperaturbehandlung und Aktivierung und Katalyse der Aerogele durchlaufen diese Veränderungen der Netzwerkstruktur in Form von Stegbreitenvergrößerung begleitet von einer Reduktion der spezifischen Oberfläche. Die Nanoskaligkeit der betrachteten Aerogele bleibt dabei jedoch erhalten und es konnte gezeigt werden, dass die fragilen Aerogele Reaktorbedingungen standhalten können und nicht zum massiven Festkörper kollabieren. Das System InPt/In2O3 demonstriert die bisher jemals höchste gemessene Selektivität bei gleichzeitig hoher Aktivität des Katalysators in der Methanol-Dampfreformierung zum Stand dieser Arbeit. Ermöglicht wird dies durch die Verknüpfung der intrinsischen Material- mit den Aerogeleigenschaften. Das Zusammenspiel einer großen Oberfläche und der Nanoskaligkeit ermöglicht eine große Querschnittsfläche der intermetallischen Phase mit dem Oxid.:Inhaltsverzeichnis I
Abkürzungen V
Einleitung 1
1 Stand in der Literatur 3
1.1 Methanol-Dampfreformierung und Energiespeicherung 3
1.2 Metalle auf Trägeroxiden 4
1.3 Trocknung von nassen Gelen 7
1.4 Maschinelles Lernen und Experimentplanung 9
2 Experimentalteil 15
2.1 Epoxidmethode 15
2.1.1 Standardsynthese Indiumoxid-Aerogel 15
2.1.2 Synthese von reinen Indiumoxid-Aerogel Monolithen 15
2.1.3 Synthese von 10 m% Pt beladenen Indiumoxidgelen 15
2.1.4 Synthese von 10 m% Pd beladenen Indiumoxidgelen 16
2.2 Wässrige Synthese 16
2.2.1 Wässriges Indiumhydroxid Sol 16
2.3 Maschinelles Lernen 17
2.3.1 Optimierung nach Gelvolumen 17
2.4 Temperaturbehandlung 17
2.5 Trägermaterialien 18
2.5.1 Silica mit Makroporen durch Emulsionstemplat 18
2.5.2 Synthese von Polystyrolmikrosphären 18
2.5.3 Silica mit Makroporen durch Polystyroltemplat JK 019 18
2.5.4 Zinkoxid Sol 19
2.5.5 Pd/ZnO Aggregate 19
2.6 Trocknungsmethoden 19
2.6.1 Überkritische Trocknung aus reinem CO2 19
2.6.2 Überkritische Trocknung aus CO2- Ethanolgemisch 20
2.6.3 Gefriertrocknung 20
2.6.4 Trocknung unter Atmosphärendruck 20
2.6.5 Trocknung unter Atmosphärendruck mit NOVEC 7000 21
2.7 Aktivierung der Aerogelkatalysatoren und MSR Katalyse 21
3 Ergebnisse und Diskussion 22
3.1 Rückblick auf die eigene Masterarbeit 22
3.1.1 Synthesen über Epoxidmethode 22
3.1.2 Ansätze in der wässrigen Synthese 24
3.2 Fortsetzung der wässrigen Synthese 26
3.3 Wässrige Synthese und Experimentplanung über Maschinelles Lernen 29
3.3.1 Erste Erfahrung mit Experimentdesign durch Bayesianische Optimierung 29
3.3.2 Beobachtungen und Schlussfolgerungen aus der ersten Anwendung von EDBO 30
3.3.3 Optimierung nach Gelvolumen der Solvogele 31
3.4 Inerte Trägermaterialien 42
3.4.1 Silica Träger 42
3.4.2 Beladung der Trägermaterialien 48
3.5 Trocknungsmethoden 54
3.6 Temperaturverhalten der Oberfläche und Morphologie 65
3.6.1 Stegbreitenvergrößerung über die Temperatur 65
3.6.2 ATR-FT-IR Untersuchungen 70
3.6.3 Kristallinität der getemperten Proben 72
3.7 Ergebnisse in der Katalyse der Methanol-Dampfreformierung 74
3.7.1 Pd/In2O3 74
3.7.2 Pt/In2O3 79
3.7.3 Beladungsreihe Pt/In2O3 83
Zusammenfassung und Ausblick 86
4 Quellen 89
5 Geräte und Parameter 98
5.1 Rasterelektronenmikroskopie 98
5.2 Transmissionselektronenmikroskopie 98
5.3 Dynamische Lichtstreuung 98
5.4 Physisorption 98
5.5 Pulver-Röntgendiffraktometrie 99
5.6 Thermogravimetrie/Differenzthermoanalyse 99
5.7 ICP-OES 99
5.8 Quecksilber Porosimetrie 100
5.9 Aktivierung der Aerogelkatalysatoren und Katalyse 100
6 Chemikalien 102
Danksagungen 105
7 Anhang 107
7.1 IR Referenzspektren 107
7.1.1 Ammoniumnitrat 107
7.1.2 Indium (III) chlorid Monohydrat 110
7.1.3 Indiumnitrat hydrat 112
7.1.4 Urotropin 114
7.1.5 Natriumborhydrid 116
7.2 Code für Experimentplanung über Maschinelles Lernen 118
7.2.1 Erstellen der Umgebung und Import von benötigten Python Paketen 118
7.2.2 Erstellen des Parameterraums 118
7.2.3 Eintragen der Ergebnisse nach jedem Batch 121
7.2.4 SHAPLEY Werte 125
7.2.5 Basen und Stabilisator Interaktionen 125
7.2.6 Basen und Salz Interaktionen 127
7.2.7 Einfluss von Stabilisatorgewicht und Stabilisatorart 127
7.2.8 Ohne Stabilisator, mit anderen Parameter Einflüssen 128
7.2.9 Zitronensäure und andere Parameterinteraktionen 129
7.2.10 Trinatriumcitrat und andere Parameterinteraktionen 131
7.3 EDBO Experiment Batches 133
Versicherung 143
|
93 |
Nonlinear optical interactions in focused beams and nanosized structuresAmber, Zeeshan H., Spychala, Kai J., Eng, Lukas M., Rüsing, Michael 02 February 2024 (has links)
Thin-film materials from μm thickness down to single-atomic-layered 2D materials play a central role in many novel electronic and optical applications. Coherent, nonlinear optical (NLO) μ-spectroscopy offers insight into the local thickness, stacking order, symmetry, or electronic and vibrational properties. Thin films and 2D materials are usually supported on multi-layered substrates leading to (multi-) reflections, interference, or phase jumps at interfaces during μ-spectroscopy, which all can make the interpretation of experiments particularly challenging. The disentanglement of the influence parameters can be achieved via rigorous theoretical analysis. In this work, we compare two self-developed modeling approaches, a semi-analytical and a fully vectorial model, to experiments carried out in thin-film geometry for two archetypal NLO processes, second-harmonic and third-harmonic generation. In particular, we demonstrate that thin-film interference and phase matching do heavily influence the signal strength. Furthermore, we work out key differences between three and four photon processes, such as the role of the Gouy-phase shift and the focal position. Last, we can show that a relatively simple semi-analytical model, despite its limitations, is able to accurately describe experiments at a significantly lower computational cost as compared to a full vectorial modeling. This study lays the groundwork for performing quantitative NLO μ-spectroscopy on thin films and 2D materials, as it identifies and quantifies the impact of the corresponding sample and setup parameters on the NLO signal, in order to distinguish them from genuine material properties.
|
94 |
Broadband Coherent Anti-Stokes Raman Spectroscopy: A Comprehensive Approach to Analyzing Crystalline MaterialsHempel, Franz 03 January 2024 (has links)
Broadband Coherent Anti-Stokes Raman scattering (B-CARS) is an advanced Raman spectroscopy technique used to investigate the vibrational properties of materials. B-CARS combines the spectral sensitivity of spontaneous Raman scattering with the enhanced signal intensity of coherent Raman techniques. While B-CARS has been successfully applied in biomedicine for ultra-fast imaging of biological tissue, its potential in solid-state physics remains largely unexplored. This work delves into the challenges and adaptations necessary to apply B-CARS to crystalline materials and shows its potential as a powerful tool for high-speed, hyperspectral investigations.
The theoretical part of this work covers inelastic light-matter scattering fundamentals and the signal generation process of B-CARS, with special attention given to the so-called Non-Resonant Background (NRB). This sample-unspecific signal amplifies the B-CARS intensity but also distorts the shape and position of the measured spectral peaks.
A reliable NRB correction becomes crucial to retrieve precise spectral parameters containing information on the investigated material's crystallographic structure, defect density, and stress distribution.
The first results chapter presents a practical guideline for an optimized workflow of sample preparation, measurement procedure, and data analysis. The influences of sample surfaces, focus positioning, and polarization sensitivity are discussed. The successful NRB removal is achieved by adapting an algorithm initially designed for biomedical purposes.
The second chapter involves a transnational Round Robin investigating the same set of materials using different experimental setups. The influences of laser source, detection range, and transmission vs. epi detection are explored to optimize the experimental parameters.
This work showcases applications such as high-speed, hyperspectral imaging of ferroelectric domain walls in LiNbO3, demonstrating the potential of B-CARS in the cutting-edge field of domain wall engineering.
Additionally, imaging and polarization-sensitive measurements are shown for MoO3 flakes, paving the way for B-CARS investigations of 2D materials.
The final chapter presents advanced techniques, such as Three-Color CARS and Time-Delay CARS, applied to crystalline materials. Three-Color CARS is especially promising, as it enhances the signal intensity for low-frequency Raman modes, which are particularly interesting for solid-state physics compared to the usual large-shift modes investigated in biomedical research. Meanwhile, Time-Delay CARS is sensitive to relaxation processes of vibrational and NRB states, enabling experimental NRB removal and lifetime measurements. Additionally, a neural network-based NRB removal method is presented, eliminating the need for a prior NRB spectrum and offering rapid computation.
In summary, this work demonstrates the successful implementation of B-CARS for crystalline materials and provides a comprehensive guideline for the optimal experimental setup, workflow, and data processing. The application of B-CARS for imaging bulk crystalline materials, ferroelectric domain walls, and 2D structures shows promising possibilities for future research.
|
95 |
Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy ApplicationsYu, Minghao, Dong, Renhao, Feng, Xinliang 20 December 2021 (has links)
Following a 15-year-long investigation on graphene, two-dimensional (2D) carbon-rich conjugated frameworks (CCFs) have attracted growing research interest as a new generation of multifunctional materials. Typical 2D CCFs include 2D π-conjugated polymers (also classified as 2D π-conjugated covalent organic frameworks) and 2D π-conjugated metal–organic frameworks, which are characterized by layer-stacked periodic frameworks with high in-plane π-conjugation. These unique structures endow 2D CCFs with regular porosities, large specific surface areas, and superior chemical stability. In addition, 2D CCFs exhibit certain notable properties (e.g., excellent electronic conductivity, designable topologies, and defined catalytic/redox-active sites), which have motivated increasing efforts to explore 2D CCFs for electrochemical energy applications. In this Perspective, the structural features and synthetic principles of 2D CCFs are briefly introduced. Moreover, we discuss recent achievements in 2D CCFs designed for various electrochemical energy conversion (electrocatalysis) and storage (supercapacitors and batteries) applications. Particular emphasis is placed on analyzing the precise structural regulation of 2D CCFs. Finally, we provide an outlook about the future development of synthetic 2D CCFs for electrochemical applications, which concerns novel monomer design, chemical methodology/strategy establishment, and a roadmap toward practical applications.
|
96 |
Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin filmsPark, Min Hyuk, Lee, Young Hwan, Kim, Han Joon, Kim, Yu Jin, Moon, Taehwan, Kim, Keum Do, Hyun, Seung Dam, Mikolajick, Thomas, Schroeder, Uwe, Hwang, Cheol Seong 11 October 2022 (has links)
Hf₁₋ₓZrₓO₂ (x ∼ 0.5–0.7) has been the leading candidate of ferroelectric materials with a fluorite crystal structure showing highly promising compatibility with complementary metal oxide semiconductor devices. Despite the notable improvement in device performance and processing techniques, the origin of its ferroelectric crystalline phase (space group: Pca2₁) formation has not been clearly elucidated. Several recent experimental and theoretical studies evidently showed that the interface and grain boundary energies of the higher symmetry phases (orthorhombic and tetragonal) contribute to the stabilization of the metastable non-centrosymmetric orthorhombic phase or tetragonal phase. However, there was a clear quantitative discrepancy between the theoretical expectation and experiment results, suggesting that the thermodynamic model may not provide the full explanation. This work, therefore, focuses on the phase transition kinetics during the cooling step after the crystallization annealing. It was found that the large activation barrier for the transition from the tetragonal/orthorhombic to the monoclinic phase, which is the stable phase at room temperature, suppresses the phase transition, and thus, plays a critical role in the emergence of ferroelectricity.
|
97 |
Temperature Dependent Size Exclusion Chromatography for Investigating Thermoreversibly Bonding Polymer SystemsBrandt, Josef 01 August 2016 (has links)
Polymers capable of thermally controlled reversible bonding reactions are promising candidates for stimuli responsive materials, as required for self-healing or drug delivery materials. In order to investigate how the dynamic reactions can be controlled, effective analytical tools are demanded that are capable of analyzing not only the polymers but can also monitor the respective bonding reactions. Herein, we employ size exclusion chromatography in a newly developed temperature dependent mode (TD SEC) for the in situ characterization of polymers that undergo retro Diels-Alder (rDA) reaction at temperatures higher than 60 °C. Monitoring the evolution of the molar mass distribution of the polymers during the rDA reaction and evaluating the data quantitatively gives detailed information about the extent of the reaction and allows elucidating structural parameters that can be used for controlling the polymers debonding behavior.
In contrast to spectroscopic techniques, TD SEC analyzes only the size of the polymers, hence the polymers do not need to fulfill any particular requirements (e.g. presence of detectable functional groups) but only need to be soluble in the TD SEC, which makes the method universally applicable. Side effects that might bias the results are minimized by using a high temperature chromatograph that allows performing the analysis in a broad temperature range (60 – 200 °C) and in different solvents. Thus, the analysis can be performed under the exact conditions that are required for the bonding reactions and an in situ image is provided.
|
98 |
Proposal for Load Adaptive Design of Microlattice Structures Suitable for PBF-LB/M ManufacturingSeidler, A., Holtzhausen, S., Korn, H., Koch, P., Paetzold, K., Müller, B. 18 June 2024 (has links)
In this paper, a proposal for a new method to design load-adaptive microlattice structures for PBF-LB/M manufacturing is presented. For this purpose, a method was developed to stiffen microlattice structures in particular by using self-similar sub-cells to ensure their manufacturability. The quality of the stiffness increase was investigated and verified by finite element simulations. Subsequently, the simulation results were critically discussed with respect to their potential for future design processes for architected materials.
|
99 |
Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistriesSabaghi, Davood, Wang, Zhiyong, Bhauriyal, Preeti, Lu, Qiongqiong, Morag, Ahiud, Mikhailovia, Daria, Hashemi, Payam, Li, Dongqi, Neumann, Christof, Liao, Zhongquan, Dominic, Anna Maria, Shaygan Nia, Ali, Dong, Renhao, Zschech, Ehrenfried, Turchanin, Andrey, Heine, Thomas, Yu, Minghao, Feng, Xinliang 23 May 2024 (has links)
The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.
|
100 |
Luminescent sp²-Carbon-Linked 2D Conjugated Polymers with High PhotostabilityXu, Shunqi, Li, Yungui, Biswal, Bishnu P., Addicoat, Matthew A., Paasch, Silvia, Imbrasas, Paulius, Park, SangWook, Shi, Huanhuan, Brunner, Eike, Richter, Marcus, Lenk, Simone, Reineke, Sebastian, Feng, Xinliang 28 September 2021 (has links)
Luminescent organic materials with high photostability are essential in optoelectronics, sensor, and photocatalysis applications. However, small organic molecules are generally sensitive to UV irradiation, giving rise to chemical decompositions. In this work, we demonstrate two novel CN-substituted two-dimensional sp²-carbon-linked conjugated polymers (2D CCPs) containing a chromophore triphenylene unit. The Knoevenagel polymerization between 2,3,6,7,10,11-hexakis(4-formylphenyl)triphenylene (HFPTP) and 1,4-phenylenediacetonitrile (PDAN) or 2,2’-(biphenyl-4,4’-diyl)diacetonitrile (BDAN), provides the crystalline 2D CCP-HFPTP-PDAN (2D CCP-1) and 2D CCP-HFPTP-BDAN (2D CCP-2) with dual pore structures, respectively. 2D CCP-1 and 2D CCP-2 exhibit the photoluminescence quantum yield (PLQY) up to 24.9% and 32.3%, which are the highest values among the reported 2D conjugated polymers and π-conjugated 2D covalent organic frameworks. Furthermore, compared with the well-known emissive small molecule tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), both 2D CCPs show superior photostability under UV irradiation for two hours, profiting from the twisted and rigid structures of the CN-substituted vinylene linkages. The present work will trigger the further explorations of novel organic emitters embedded in 2D CCPs with high PLQY and photostability, which can be useful for optoelectronic devices.
|
Page generated in 0.0714 seconds