• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracheal mineralization : cellular and molecular mechanisms in mice / Minéralisation trachéale : mécanismes cellulaires et moléculaires dans le modèle de la souris

Tabcheh, Lina 31 October 2014 (has links)
La trachée est une structure très complexe des voies respiratoires, qui est composée d'anneaux cartilagineux, fait de cartilage hyalin, et de bandes musculaires, formées de cellules musculaires lisses, dont l'architecture confère à la fois rigidité et souplesse au canal trachéen. Contrairement à d'autres cartilages, tels que ceux trouvés dans la plaque de croissance en développement et dans les articulations adultes, ou aux cellules musculaires lisses des vaisseaux, très peu d'informations sont disponibles sur le développement du cartilage et du tissu musculaire trachéal et sur leur capacité à se minéraliser, bien que la calcification de la trachée soit un événement commun dans la population âgée et plus rare dans certaines pathologies. Dans ce contexte, ce travail de thèse a cherché dans le modèle souris à mieux caractériser le cartilage et le tissu musculaire lisse de la trachée et également comprendre les mécanismes moléculaires jusqu'alors inexplorés, régulant la minéralisation de la trachée. Grâce à une nouvelle technique de culture de cellules provenant de la trachée, nous avons démontré que les chondrocytes et les cellules musculaires lisses trachéaux sont tous deux capables de minéraliser lorsqu'ils sont traités avec un haut niveau de Pi, mais via des mécanismes moléculaires différents. En parallèle, une étude in vivo nous a permis de démontrer que la minéralisation de la trachée se produit uniquement dans les anneaux cartilagineux dès 30 jours après la naissance. Des analyses histologiques et moléculaires ont permis d'affiner ces résultats et de proposer un modèle de minéralisation de la trachée via une progression rostro-caudale dépendante de BMP2 / The trachea is a very complex structure of the respiratory tract, composed of C-shaped cartilaginous rings, made of hyaline cartilage, and muscular bands, made of smooth muscle cells, conferring rigidity and compliance to the windpipe, respectively. In contrast to other intensely studied cartilages such as the ones found in the developing growth plate and in the adult joints or smooth muscle cells from the vasculature, very little information is available on the development of the tracheal cartilage and smooth muscle tissues and on their innate propensity to mineralize, although calcification of the trachea is a common finding in the elderly population and also a rare manifestation of pathologic conditions. In this context, this PhD work sought to better characterized the poorly studied tracheal cartilage and smooth muscle tissue and understand the molecular mechanisms regulating tracheal mineralization that has been unexplored so far. We tackle these questions in the mouse model. Setting up a novel in-vitro culture of tracheal cells, we demonstrated that tracheal chondrocytes and smooth muscles cells are prone to mineralize when treated with high level of Pi, through different molecular mechanisms. In parallel, we found that in vivo mineralization of the trachea only happens in the cartilaginous rings, as early as 30 days after birth. Histological and molecular evidence suggest that tracheal mineralization occurs through a BMP-dependent rostro-caudal progression
2

The expression of novel, load-induced extracellular matrix modulating factors in cardiac remodeling

Mustonen, E. (Erja) 07 September 2010 (has links)
Abstract Cardiac remodeling is defined as changes in the size, shape and function of the heart, caused most commonly by hypertension-induced left ventricular (LV) hypertrophy and myocardial infarction (MI). It is characterized by changes in cellular and extracellular compartments regulated by e.g. neurohumoral and inflammatory factors. In the present study the expression of novel, load induced factors, thrombospondin (TSP)-1 and -4, matrix Gla protein (MGP), tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14, was investigated during cardiac remodeling. Their expression in the heart was characterized using experimental models of pressure overload, hypertensive hypertrophy and MI, and the effect of hypertrophic agonists and cellular stretch was studied in vitro. The effect of beta-blocker treatment on TSP expression was also examined. TSP-1 and -4 were rapidly upregulated in response to pressure overload, and the induction of TSP-4 gene expression was attenuated in hypertrophied heart. After MI, TSP-1 and -4 mRNA and TSP-1 protein levels were increased, and the induction was attenuated by metoprolol. TSP-1 and -4 expression correlated with natriuretic peptide expression and LV remodeling after MI. In hypertensive hypertrophy, only TSP-4 expression decreased after metoprolol treatment and was correlated with LV remodeling. MGP gene expression was increased in response to pressure overload and MI both in the early and late phase of cardiac remodeling. MGP protein levels were increased in the acute phase of post-MI remodeling and in hypertensive hypertrophy. In vitro, angiotensin II increased MGP gene expression in myocytes and fibroblasts, whereas expression decreased in response to mechanical stretch. In response to increased cardiac load Fn14 expression was upregulated both acutely and chronically while TWEAK expression remained relatively constant. Fn14 localized mainly to fibroblasts in the inflammatory area while TWEAK localized to myocytes and endothelial cells. In myocytes, Fn14 expression was induced by hypertrophic agonists and mechanical stretch in contrast to stabile or decreased TWEAK expression. This study provides new insights into the expression of the studied novel factors in cardiac remodeling. The distinct expression of TSPs in pressure overload and post-MI suggests that TSP-1 and -4 may have unique roles in the remodeling process. The results also imply that MGP is part of the common gene program of hypertrophic remodeling in vivo and contributes to the molecular basis of cardiac hypertrophy. Finally, the study demonstrates differential regulation of TWEAK and Fn14 expression in the heart and emphasizes the importance of Fn14 as a mediator of TWEAK/Fn14 signaling and as a potential target of therapeutic interventions.
3

Modification du phénotype des chondrocytes dans la plaque de croissance et le cartilage articulaire : de la physiologie à la pathologie / Modification of chondrocyte phenotype in growth plate and articular cartilage : from physiology to pathology

Deng, Chaohua 28 June 2017 (has links)
Cartilage est un tissu unique, caractérisé par la matrice extracellulaire abondante et un seul type de cellule, le chondrocytes. Les modifications du phénotype chondrocytes, tels que la prolifération et de l'hypertrophie, sont des événements physiologiques survenant au cours du développement squelettique et cartilage articulaire adulte. Dans la plaque de croissance, la division active et l'expansion des chondrocytes est le mécanisme principal lors du processus de l’ossification endochondrale. Les chondrocytes jouent un rôle essentiel dans ce processus. Le comportement et les caractéristiques cellulaires des chondrocytes de la plaque de croissance sont régulées à tous les stades de l'ossification endochondrale par un réseau complexe d'interactions entre les hormones circulantes, les facteurs de croissance produits localement et la matrice extracellulaire sécrétée par les chondrocytes. Dans le cartilage articulaire, les chondrocytes forment des régions morphologiquement distinctes et maintiennent l'équilibre entre production et dégradation des composants de la matrice extracellulaire. Cependant, l'altération pathologique du phénotype des chondrocytes pourrait entraîner de nombreuses maladies squelettiques et articulaires humaines, y compris les chondrodysplasies et l'arthrose. Dans ce contexte, mon projet de doctorat a été conçu pour étudier I) les modifications des phénotypes chondrocytaires déclenchés par les déterminants génétiques et le stress métabolique et par conséquent II) la participation des deux conditions pathologiques au développement de la maladie et/ou à la progression / Cartilage is a unique tissue characterized by abundant extracellular matrix and a single cell type, the chondrocyte. Modifications of chondrocyte phenotype, such as proliferation and hypertrophy, are physiological events occuring during skeletal development and in adult articular cartilage. In growth plate cartilage, the active division and expansion of chondrocytes is the primary mechanism during the process of endochondral bone formation. Chondrocytes play a central role in this process, through a combination of proliferation, extracellular matrix secretion and hypertrophy. The behaviour and cellular features of growth plate chondrocytes are regulated at all stages of endochondral ossification by a complex network of interactions between circulating hormones, locally produced growth factors and the extracellular matrix secreted by the chondrocytes. In articular cartilage, the chondrocytes form morphologically distinct regions, including a superficial region of flattened cells, a sparsely populated middle layer, and a deep zone of hypertrophic chondrocytes. In mature articular cartilage, these chondrocytes maintain the balance of production and degradation of extracellular matrix components. However, pathological alteration of chondrocyte phenotype could lead to numerous human skeletal and articular diseases, including chondrodysplasias and osteoarthritis. In this context, my PhD project was designed to study I) the modifications of chondrocyte phenotypes triggered by genetic determinants and metabolic stress and consequently II) the participation of both pathologic conditions to disease development and/or progression
4

L'accélération de la rigidité vasculaire associée au diabète de type 1 : implication de la protéine Gla de la matrice

Doyon, Marielle 10 1900 (has links)
L'hypertension systolique isolée (HSI), amenée par une augmentation de la rigidité vasculaire, est la forme d'hypertension la plus fréquente chez les personnes âgées de plus de 60 ans. L'augmentation de la rigidité vasculaire, causée en partie par la calcification aortique médiale, est accélérée de 15 ans chez les diabétiques. Il est suggéré que la calcification aortique serait responsable de la résistance aux agents antihypertenseurs chez les patients souffrant d'HSI, d'où la nécessité de développer de nouvelles stratégies thérapeutiques ciblant la calcification artérielle. La protéine Gla de la matrice (MGP) est une protéine anti-calcifiante dépendante de la vitamine K, qui doit être γ-carboxylée pour être active. Deux enzymes sont responsables de la γ-carboxylation, soit la γ-glutamyl-carboxylase et la vitamine K époxyde réductase (VKOR). Plusieurs études récentes ont indiqué que la calcification vasculaire semblait être associée à une réduction de la γ-carboxylation de la MGP, et à un déficit en vitamine K. La modulation de l'expression et/ou de l'activité de la γ-carboxylase et de la VKOR et l'impact de cette modulation sur la γ-carboxylation de la MGP en présence de diabète n'est pas connue. L'objectif principal de cette thèse était de déterminer les mécanismes impliqués dans l'accélération de la rigidité artérielle causée par la calcification des gros troncs artériels dans le diabète. Nous avons ainsi confirmé, dans un modèle animal de rigidité artérielle en présence de diabète de type 1, que la γ-carboxylation de la MGP était bel et bien altérée au niveau aortique. En fait, nous avons démontré que la quantité de MGP active (i.e. MGP γ-carboxylée, cMGP) au sein de la paroi vasculaire est diminuée significativement. Parallèlement, l'expression de la γ-carboxylase était diminuée de façon importante, alors que ni l'expression ni l'activité de la VKOR n'étaient modifiées. La diminution de l'expression de la γ-carboxylase a pu être reproduite dans un modèle ex vivo d'hyperglycémie. À l'aide de ce modèle, nous avons démontré que la supplémentation en vitamine K dans le milieu de culture prévenait la diminution de l'expression de la γ-carboxylase, alors que les animaux diabétiques de notre modèle in vivo avaient des concentrations plasmatiques de vitamine K pratiquement triplées. D'autre part, l'étude des voies de signalisation impliquées a révélé que la voie PKCβ pourrait être responsable de l'altération de la γ-carboxylase. Ces résultats génèrent de nouvelles pistes de réflexion et de nouvelles idées de recherche. Par exemple, il serait important de vérifier l'effet de la supplémentation en vitamine K dans le modèle animal de rigidité artérielle en présence de diabète pour évaluer l'effet sur la γ-carboxylation de la MGP et par le fait même, sur la calcification vasculaire. De plus, l'évaluation de l'effet de l'administration de molécules ciblant la voie PKC chez ce même modèle animal permettrait de déterminer leur impact sur le développement de la calcification vasculaire et d'évaluer leur potentiel thérapeutique. Selon les résultats de ces études, de nouvelles options pourraient alors être à notre disposition pour prévenir ou traiter la calcification artérielle médiale associée au diabète, ce qui aurait pour effet de ralentir le développement de la rigidité artérielle et d'ainsi diminuer le risque cardiovasculaire associé à l'HSI. / Arterial stiffness contributes to the development of isolated systolic hypertension (ISH), the most prevalent form of hypertension in the elderly. Arterial stiffness, due in part to the calcification of large arteries, is accelerated by 15 years in diabetic patients. It is suggested that vascular calcification could be responsible for the resistance to anti-hypertensive agents in patients suffering from ISH, emphasizing the need of developing new therapies directly targeting vascular calcification. The matrix Gla protein (MGP) is a vitamin K-dependent secretory protein post-transtionnaly modified by the enzyme γ-glutamyl-carboxylase. This post-translational modification renders MGP active, i.e. able to inhibit vascular calcification (cMGP). Another enzyme, the vitamin K oxidoreductase (VKOR) is necessary to ensure the recycling of vitamin K from the epoxide to hydroquinone, the form used by the γ-carboxylase. Recent studies have shown that vascular calcification is associated with increased levels of under-carboxylated MGP (ucMGP), and vitamin K deficiency. However, the modulation of the expression or the activity of the enzymes involved in γ-carboxylation, as well as the impact of this modulation is currently unknown. The goal of this research project was to study the mechanisms involved in the accelerated development of arterial stiffness in diabetes due to increased vascular calcification of large arteries. In a rat model of type 1 diabetes with increased arterial stiffness, we demonstrated that aortic MGP γ-carboxylation was altered. In fact, the amount of active MGP was reduced in the arterial wall, coupled with a marked reduction of γ-carboxylase expression. However, neither VKOR expression nor activity was modified. This alteration of the γ-carboxylase was reproduced in an ex vivo model of hyperglycemia. In this model, vitamin K supplementation prevented the reduction of γ-carboxylase expression, whereas surprisingly, plasma levels of vitamin K were increased in diabetic rats compared to controls. The PKC signaling pathway has been identified as the pathway involved in the γ-carboxylase alteration. Our results provide multiple new research ideas. For instance, it would be important to study the effect of vitamin K supplementation in an animal model of diabetes-associated arterial stiffness, to gain insight into its impact on γ-carboxylase and MGP γ-carboxylation, and ultimately on vascular calcification. Moreover, it would be very interesting to determine the effect of molecules affecting the PKC pathway on vascular calcification in this model, which would allow for a better understanding of their therapeutic potential. Depending on the results of these experiments, we could have at our disposition new therapeutic options to prevent and treat vascular calcification, which would have the potential to slow down the acceleration of arterial stiffness in diabetic patients and reduce the cardiovascular risk associated with ISH.
5

Characterization of non-collagenous extracellular matrix proteins in cardiac and aortic valve remodelling

Pohjolainen, V. (Virva) 04 September 2012 (has links)
Abstract Heart failure (HF) and aortic valve stenosis (AS) are complex disorders affected by functional alterations and actively regulated remodelling of the heart and the aortic valve, respectively. In addition to structural proteins, such as collagens and elastin, the extracellular matrix (ECM) in the heart and the aortic valve comprises non-collagenous factors that are not strictly involved in the architecture but may modulate cardiac and valvular remodelling. In the present study the expression of non-collagenous fibrosis- and calcification-related ECM proteins was investigated in HF-associated cardiac remodelling from different origins as well as in fibrocalcific aortic valve disease leading to AS. The experimental models of pressure overload, myocardial infarction (MI) and chronic renal failure were used to study the cardiac expression of bone morphogenetic protein (BMP)-2, BMP-4, bone sialoprotein, matrix Gla protein (MGP), osteoactivin, osteopontin, periostin and/or pleiotrophin in vivo in cardiac remodelling. Human aortic valves, obtained from patients undergoing valve replacement, were studied to characterize the valvular expression of BMP-2, BMP-4, bone sialoprotein, MGP, osteoactivin, osteopontin, osteoprotegerin, periostin, pleiotrophin, and thrombospondins (TSPs) 1-4 in the different stages of fibrocalcific aortic valve disease. Left ventricular (LV) MGP expression was upregulated in vivo in non-uremic cardiac remodelling. In vitro results indicate that angiotensin II elevates MGP expression in cardiomyocytes and fibroblasts. Periostin gene expression was induced in cardiac but not in aortic valve remodelling and the cardiac induction in chronic renal insufficiency was associated with LV hypertrophy and blood pressure as well as the cardiac gene expression of other fibrosis-related genes. Bone sialoprotein and osteopontin were expressed in the aortic valves in parallel with calcification, and also in distinct models of cardiac remodelling. Osteoprotegerin protein expression in stenotic valves was weak regardless of a simultaneous increase in gene expression. BMPs were downregulated in AS and no change in LV gene expression was detected in uremic cardiac remodelling. All the studied TSPs were expressed in human aortic valves, and especially the expression of TSP-2 was shown to increase in fibrocalcific aortic valves simultaneously with decreased activation of the Akt/nuclear factor (NF)-κB-pathway. This study delineates distinct expression patterns of non-collagenous ECM proteins in pathological tissue remodelling in the heart and in the aortic valve, and thus emphasizes the role of ECM proteins as an important modulator of cardiac and aortic valve remodelling. / Tiivistelmä Sydämen vajaatoiminnan ja aorttastenoosin taudinkuvaan kuuluvat toiminnallisten muutosten ohella aktiivisesti säädellyt soluväliaineen muutokset sydämen ja aorttaläpän rakenteessa. Soluväliaineen rakenteen muodostavien kollageenien ja elastiinin lisäksi soluväliaineessa on rakenteeseen kuulumattomia proteiineja. Tässä väitöskirjassa tutkittiin sidekudoksen kertymiseen ja kudosten kalkkiutumiseen osallistuvia soluväliaineen proteiineja sydämen vajaatoiminnassa sekä aorttastenoosiin johtavassa kalkkiuttavassa aorttaläppäviassa. Tutkimuksessa selvitettiin sydämen soluväliaineen proteiinien ilmentymistä painekuormituksen, sydäninfarktin ja pitkäaikaisen munuaisten vajaatoiminnan koemalleissa rotalla. Tutkittavia proteiineja olivat luun morfogeneettiset proteiinit 2 ja 4, luun sialoproteiini, matriksin Gla proteiini (MGP), osteoaktiviini, osteopontiini, periostiini ja pleiotropiini. Edellä mainittujen proteiinien lisäksi osteoprotegeriinin ja trombospondiinien 1-4 ilmentymistä tutkittiin kalkkiuttavan aorttaläppävian eri kehitysvaiheissa. Aorttaläpät oli kerätty tekoläppäleikkauspotilailta. Sydämessä MGP:n ilmentyminen lisääntyi kaikissa muissa paitsi munuaisten vajaatoiminnan koemallissa. Angiotensiini II nosti MGP:n ilmentymistä sydänlihassoluissa ja sidekudossoluissa. Periostiinin ilmentyminen lisääntyi sydämen uudelleenmuovautumisessa, muttei aorttaläppäviassa. Lisäksi munuaisten vajaatoiminnan aiheuttama periostiinin ilmentymisen muutos sydämessä liittyi sekä sydämen kasvuun, verenpaineen nousuun että muiden sidekudosta muokkaavien proteiinien ilmentymiseen. Luun sialoproteiinin ja osteopontiinin ilmentymiset erosivat toisistaan erilaisissa sydämen vajaatoiminnan malleissa, mutta aorttaläpissä niiden molempien ilmentyminen oli suhteessa läpän kalkkiutumiseen. Osteoprotegeriinin geenin ilmentyminen lisääntyi kalkkiutuneissa aorttaläpissä vaikkakin proteiinin määrä pysyi vähäisenä. Luun morfogeneettisten proteiinien ilmentyminen oli alentunut sairaissa läpissä, muttei sydämessä munuaisten vajaatoiminnan aikana. Aorttaläpissä ilmennettiin kaikkia trombospondiineita, joista trombospondiini-2:n ilmentyminen kasvoi sairaissa aorttaläpissä. Kalkkiutuneissa läpissä solunsisäinen Akt/NF-κB–signaalinvälitysjärjestelmä oli vaimentunut. Tutkimus osoittaa, että soluväliaineen proteiinien ilmentymistä säädellään eri tavoin sydämen vajaatoiminnassa ja aorttastenoosissa kudoksen uudelleenmuovautumisprosessin aikana.

Page generated in 0.0783 seconds