Spelling suggestions: "subject:"1atrix ampling"" "subject:"1atrix campling""
1 |
Item Parameter Drift as an Indication of Differential Opportunity to Learn: An Exploration of item Flagging Methods & Accurate Classification of ExamineesSukin, Tia M. 01 September 2010 (has links)
The presence of outlying anchor items is an issue faced by many testing agencies. The decision to retain or remove an item is a difficult one, especially when the content representation of the anchor set becomes questionable by item removal decisions. Additionally, the reason for the aberrancy is not always clear, and if the performance of the item has changed due to improvements in instruction, then removing the anchor item may not be appropriate and might produce misleading conclusions about the proficiency of the examinees. This study is conducted in two parts consisting of both a simulation and empirical data analysis. In these studies, the effect on examinee classification was investigated when the decision was made to remove or retain aberrant anchor items. Three methods of detection were explored; (1) delta plot, (2) IRT b-parameter plots, and (3) the RPU method. In the simulation study, degree of aberrancy was manipulated as well as the ability distribution of examinees and five aberrant item schemes were employed. In the empirical data analysis, archived statewide science achievement data that was suspected to possess differential opportunity to learn between administrations was re-analyzed using the various item parameter drift detection methods. The results for both the simulation and empirical data study provide support for eliminating the use of flagged items for linking assessments when a matrix-sampling design is used and a large number of items are used within that anchor. While neither the delta nor the IRT b-parameter plot methods produced results that would overwhelmingly support their use, it is recommended that both methods be employed in practice until further research is conducted for alternative methods, such as the RPU method since classification accuracy increases when such methods are employed and items are removed and most often, growth is not misrepresented by doing so.
|
2 |
Improving Survey Methodology Through Matrix Sampling Design, Integrating Statistical Review Into Data Collection, and Synthetic Estimation EvaluationSeiss, Mark Thomas 13 May 2014 (has links)
The research presented in this dissertation touches on all aspects of survey methodology, from questionnaire design to final estimation. We first approach the questionnaire development stage by proposing a method of developing matrix sampling designs, a design where a subset of questions are administered to a respondent in such a way that the administered questions are predictive of the omitted questions. The proposed methodology compares favorably to previous methods when applied to data collected from a household survey conducted in the Nampula province of Mozambique. We approach the data collection stage by proposing a structured procedure of implementing small-scale surveys in such a way that non-sampling error attributed to data collection is minimized. This proposed methodology requires the inclusion of the statistician in the data editing process during data collection. We implemented the structured procedure during the collection of household survey data in the city of Maputo, the capital of Mozambique. We found indications that the data resulting from the structured procedure is of higher quality than the data with no editing. Finally, we approach the estimation phase of sample surveys by proposing a model-based approach to the estimation of the mean squared error associated with synthetic (indirect) estimates. Previous methodology aggregates estimates for stability, while our proposed methodology allows area-specific estimates. We applied the proposed mean squared error estimation methodology and methods found during literature review to simulated data and estimates from 2010 Census Coverage Measurement (CCM). We found that our proposed mean squared error estimation methodology compares favorably to the previous methods, while allowing for area-specific estimates. / Ph. D.
|
3 |
Optimierung von Messinstrumenten im Large-scale AssessmentHecht, Martin 21 July 2015 (has links)
Messinstrumente stellen in der wissenschaftlichen Forschung ein wesentliches Element zur Erkenntnisgewinnung dar. Das Besondere an Messinstrumenten im Large-scale Assessment in der Bildungsforschung ist, dass diese normalerweise für jede Studie neu konstruiert werden und dass die Testteilnehmer verschiedene Versionen des Tests bekommen. Hierbei ergeben sich potentielle Gefahren für die Akkuratheit und Validität der Messung. Um solche Gefahren zu minimieren, sollten (a) die Ursachen für Verzerrungen der Messung und (b) mögliche Strategien zur Optimierung der Messinstrumente eruiert werden. Deshalb wird in der vorliegenden Dissertation spezifischen Fragestellungen im Rahmen dieser beiden Forschungsanliegen nachgegangen. / Measurement instruments are essential elements in the acquisition of knowledge in scientific research. Special features of measurement instruments in large-scale assessments of student achievement are their frequent reconstruction and the usage of different test versions. Here, threats for the accuracy and validity of the measurement may emerge. To minimize such threats, (a) sources for potential bias of measurement and (b) strategies to optimize measuring instruments should be explored. Therefore, the present dissertation investigates several specific topics within these two research areas.
|
Page generated in 0.2807 seconds