• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 33
  • 29
  • 10
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Recherche des mécanismes impliqués dans la modulation de la vulnérabilité à la cocaïne par les conditions environnementales / Mechanism involved in the modulation of cocaine vulnerability by environmental manipulation

Lafragette, Audrey 08 November 2016 (has links)
Une influence des conditions de vie sur le phénomène de dépendance a été observée chez l'Homme et modélisée chez l'animal. Ainsi chez les rongeurs, l'exposition à un environnement enrichi (EE) réduit le risque d'addiction, alors qu'un stress l'augmente. Les mécanismes responsables de ces influences environnementales sur la dépendance ont été l'objet de mes recherches. D'une part, nous avons montré que des injections chroniques de cocaïne augmentent l'expression du facteur de transcription ΔFosB dans les cellules striatales exprimant le récepteur dopaminergique D1R (D1R+), alors que l'EE seul l'augmente spécifiquement dans les cellules D1R(-). De façon intéressante, ces effets sont abolis lorsque la cocaïne est administrée à des souris exposées à l'EE. Ces résultats suggèrent que la prévention de la sensibilisation comportementale par l'EE corrèle avec une accumulation modifiée de ΔFosB. D'autre part, le laboratoire avait montré que le passage d'un EE à un environnement standard augmentait la vulnérabilité à la cocaïne. Toujours dans le but de découvrir les mécanismes impliqués, nous nous sommes intéressés au système endocannabinoïde (ECS), un régulateur du stress et aux processus épigénétiques. Nous avons observé que ce switch environnemental modulait l'expression de différents acteurs de l'ECS, en particulier le récepteur CB1 dans l'amygdale, et aussi celle de la protéine régulatrice de la transcription MeCP2 (Methyl CpG-binding-Protein-2) dans le noyau accumbens. Dans son ensemble, ce travail a permis d'identifier des mécanismes moléculaires, régulés par différentes manipulations environnementales, et pouvant participer à la vulnérabilité aux drogues d'abus. / Influences of life conditions on the phenomenon of addiction has been observed in Human and modeled in animals. Indeed, in rodents, exposure to enriched environment (EE) reduces the risk of addiction, whereas stress increases it. The mechanisms responsible for these environmental influences on addiction have been the object of my thesis. On one hand, we have shown that chronic injections of cocaine increase the expression of the transcription factor ΔFosB in striatal cells expressing the dopaminergic receptor D1 (D1R(+) cells) whereas EE by itself increases it specifically in D1R(-) cells. Interestingly, these effects were abolished when cocaine is administrated to mice exposed to EE. These results suggest that the prevention of the behavioral sensitization induced by EE correlates with a modified accumulation of ΔFosB. On the other hand, our laboratory has shown that switching mice from EE to a standard environment increases the vulnerability to cocaine. In order to uncover the mechanisms underlying this potentiation, we studied the endocannabinoid system, involved in stress regulation and in epigenetic processes. We have observed that the environmental switch modulates the expression of different actors of the endocannabinoid system, especially the CB1 receptor in the amygdala, and of MeCP2 (Methyl CpG-binding-Protein-2), a protein involved in the control of transcription in the nucleus accumbens. Altogether, this work allowed us to highlight molecular mechanisms that are regulated by environmental manipulations and that could participate to the individual vulnerability to drugs of abuse.
32

Análise da função dos microRNAs na regulação da expressão de DNMT3B/Dnmt3b e MECP2/Mecp2 / Analysis of microRNAs function in the regulation of DNMT3B/Dnmt3b and MECP2/Mecp2 gene expression

Claudia Regina Gasque Schoof 30 January 2012 (has links)
A metilação do DNA em mamíferos é uma importante modificação epigenética, sendo essencial no silenciamento de DNAs repetitivos, de regiões que sofrem imprinting genômico e no estabelecimento do cromossomo X inativo em fêmeas. Existem 5 tipos de DNA Metiltransferases, tendo a DNMT3B um importante papel na metilação de novo. A MeCP2, por sua vez, é uma proteína capaz de reconhecer sítios de DNA metilados e recrutar proteínas responsáveis pela desacetilação das histonas. Isto provoca alterações na conformação da cromatina, impedindo a transcrição gênica. Alterações nos padrões de expressão de DNMT3B e na metilação do DNA encontradas em diferentes tipos de tumores, e a temporalidade de expressão de Dnmt3b e de Mecp2 durante ondas de desmetilação e de metilação que ocorrem no início do desenvolvimento embrionário, podem auxiliar na identificação de fatores envolvidos no estabelecimento e manutenção do padrão de metilação do DNA, os quais ainda são pouco conhecidos. Por sua vez, uma nova classe de pequenos RNAs, os microRNAs, envolvidos com a regulação da expressão gênica pós-transcricional, têm grande importância na manutenção do estado diferenciado de diferentes tipos celulares. Trabalhos recentes demonstram também que há alterações nos padrões de expressão de microRNAs entre tecidos normais e tumorais. Assim, é objetivo deste trabalho a identificação de possíveis miRNAs envolvidos na modulação da expressão dos genes DNMT3B/Dnmt3b e MeCP2/Mecp2 em diferentes linhagens de células normais e tumorais, bem como, em células tronco embrionárias humanas e murinas submetidas à diferenciação. / DNA methylation in mammals is an important epigenetic modification, playing an essential role in the silencing of repetitive DNA, in genomic imprinting and, in females, the establishment of X chromosome inactivation. There are 5 DNA metyhltransferases, and one of them, DNMT3B has an important role in de novo methylation. MeCP2, by its turn, is a protein capable of recognizing methylated DNA sites and of recruiting proteins responsible for histones deacetylation. This causes alterations in chromatin conformation, therefore inhibiting gene transcription. Changes in the expression patterns of DNMT3B and in DNA methylation are found in several types of tumors, and temporal expression of Dnmt3b and Mecp2 during global demetyhlation and de novo methylation waves, which occur in early embryonic development, could give a better understanding of the factors involved in the establishment and maintenance of DNA methylation patterns, which are still largely unkown. Additionally, a new class of small RNAs, the microRNAs, involved in the post-transcriptional gene silencing, has great importance in maintaining the differentiated state of several cell types. Recent studies have demonstrated alterations in miRNAs expression patterns between normal and tumor tissues. Thus, the aim of this work was to identify possible miRNAs involved in the modulation of Dnmt3b and Mecp2 RNAs in different normal and tumoral cell lines, as well as in human and murine embryonic stem cells and their respectively differentiated embryoid bodies.
33

Single-Cell Transcriptome Analysis of Olfactory Sensory Neurons

Chien, Ming-Shan January 2016 (has links)
<p>Olfactory sensory neurons (OSNs), which detect a myriad of odorants, are known to express one allele of one olfactory receptor (OR) gene (Olfr) from the largest gene family in the mammalian genome. The OSNs expressing the same OR project their axons to the main olfactory bulb where they converge to form glomeruli. This “One neuron-one receptor rule” makes the olfactory epithelium (OE), which consists of a vast number of OSNs expressing unique ORs, one of the most heterogeneous cell populations. However, the mechanism of how the single OR allele is chosen remains unclear along with the question of whether one OSN only expresses a single OR gene, a hypothesis that has not been rigorously verified while we performed the experiments. Moreover, failure of axonal targeting to single glomerulus was observed in MeCP2 deficient OSNs where delayed development was proposed as an explanation for the phenotype. How Mecp2 mutation caused this aberrant targeting is not entirely understood.</p><p>In this dissertation, we explored the transcriptomes of single and mature OSNs by single-cell RNA-Seq to reveal their heterogeneity and further studied the OR gene expression from these isolated OSNs. The singularity of sequenced OSNs was ensured by the observation of monoallelic expression of X-linked genes from the hybrid samples from crosses between mice of different strains where strain-specific polymorphisms could be used to track the allelic origins of SNP-containing reads. The clustering of expression profiles from triplicates that originated from the same cell assured that the transcriptomic identities of OSNs were maintained through the experimental process. The average gene expression profiles of sequenced OSNs correlated well to the conventional transcriptome data of FACS-sorted Omp-positive cells, and the top-ranked expression of OR was conceded in the single-OSN transcriptomes. While exploring cellular diversity, in addition to OR genes, we revealed nearly 200 differentially expressed genes among the sequenced OSNs in this study. Among the 36 sequenced OSNs, eight cells (22.2%) showed multiple OR gene expression and the presences of additional ORs were not restricted to the neighbor loci that shared the transcriptional effect of the primary OR expression, suggesting that the “One neuron-one receptor rule” might not be strictly true at the transcription level. All of the inferable ORs, including additional co-expressed ORs, were shown to be monoallelic. Our sequencing of 21 Mecp2308 mutant OSNs, of which 62% expressed more than one OR genes, and the expression levels of the additional ORs were significantly higher than those in the wild-type, suggested that MeCP2 plays a role in the regulation of singular OR gene expression. Dual label in situ hybridization along with the sequence data revealed that dorsal and ventral ORs were co-expressed in the same Mecp2 mutant OSN, further implying that MeCP2 might be involved in regulation of OR territories in the OE. Our results suggested a new role of MeCP2 in OR gene choice and ratified that this multiple-OR expression caused by Mecp2 mutation did not accompany delayed OSN development that has been observed in the previous studies on the Mecp2 mutants.</p> / Dissertation
34

Ubiquitous Reactivation and Targeted Preservation of MeCP2 Expression in a Mouse Model of Rett Syndrome

Lang, Min 20 November 2012 (has links)
Rett syndrome is a neurodevelopmental disorder that is predominately caused by mutations of the MECP2 gene. As neuronal apoptosis is not observed in RTT patients and MeCP2-deficient mice, the neurological deficits may be reversible. To address this, we reactivated MeCP2 expression ubiquitously in MeCP2-deficient mice after symptom onset. Our results showed that life span, behavioural performances, EEG activity, thermoregulation, and daily rhythmic activity were significantly improved after MeCP2 reactivation. Furthermore, the extent of improvement was dependent upon the efficiency of MeCP2 reactivation. To assess the role of the catecholaminergic system in Rett syndrome pathophysiology, we selectively preserved MeCP2 function within tyrosine hydroxylase expressing cells. We observed a significant improvement in the life span of male rescue mice and reduced sudden unexplained death rates in female rescue mice. Behavioural performances and EEG patterns were also significantly improved.
35

Ubiquitous Reactivation and Targeted Preservation of MeCP2 Expression in a Mouse Model of Rett Syndrome

Lang, Min 20 November 2012 (has links)
Rett syndrome is a neurodevelopmental disorder that is predominately caused by mutations of the MECP2 gene. As neuronal apoptosis is not observed in RTT patients and MeCP2-deficient mice, the neurological deficits may be reversible. To address this, we reactivated MeCP2 expression ubiquitously in MeCP2-deficient mice after symptom onset. Our results showed that life span, behavioural performances, EEG activity, thermoregulation, and daily rhythmic activity were significantly improved after MeCP2 reactivation. Furthermore, the extent of improvement was dependent upon the efficiency of MeCP2 reactivation. To assess the role of the catecholaminergic system in Rett syndrome pathophysiology, we selectively preserved MeCP2 function within tyrosine hydroxylase expressing cells. We observed a significant improvement in the life span of male rescue mice and reduced sudden unexplained death rates in female rescue mice. Behavioural performances and EEG patterns were also significantly improved.
36

Monoaminergic Regulation of MeCP2 Phosphorylation in Mouse Models of Psychiatric Disease

Hutchinson, Ashley Nicole January 2011 (has links)
<p>Activation of monoaminergic receptors is essential to the mechanism by which psychostimulants and antidepressants induce changes in behavior. Although these drugs rapidly increase monoaminergic transmission, they need to be administered for several weeks or months in order to produce long-lasting alterations in behavior. This observation suggests that it is likely that molecular mechanisms downstream of receptor activation contribute to the effects of psychostimulants and antidepressants on behavior. </p><p>Recently, we and others have demonstrated that the methyl-CpG-binding protein 2 (MeCP2) contributes to both neural and behavioral adaptations induced by repeated psychostimulant exposure (Deng et al, 2010, Im et al, 2010). Psychostimulants induce rapid and robust phosphorylation of MeCP2 at Ser421 (pMeCP2), a site that is thought to modulate MeCP2-dependent chromatin regulation (Cohen et al, 2011), and this phosphorylation event is selectively induced in the GABAergic interneurons of the nucleus accumbens (NAc). In order to understand the signaling pathways that contribute to the pattern of pMeCP2 we observe, I characterized the monoaminergic signaling pathways that regulate pMeCP2. I found that activation of dopamine (DA) and serotonin (5-HT) transmission is sufficient to induce pMeCP2. The novel finding that drugs that activate serotonergic signaling induce pMeCP2 suggests that pMeCP2 may be involved in serotonergic mediated behaviors.</p><p>To determine the requirement of pMeCP2 in serotonergic mediated behaviors, I utilized mice that bear a knockin (KI) mutation that converts serine to alanine at 421 (S421A) (Cohen et al, 2011). After characterizing the behavioral phenotype of these mice, I conducted tests to assess anxiety- and depression-like behavior. I found that the KI mice do not display heightened anxiety in several assays. However, the KI mice exhibit depression-like behavior in the forced swim and tail suspension but show no differences compared to wild-type (WT) littermates in the sucrose preference test, suggesting that pMeCP2 may be implicated in the behavioral response to stressful stimuli. </p><p>Because we are interested in examining the role of pMeCP2 in the behavioral adaptations to chronic monoaminergic signaling, I then put the KI mice and their WT littermates through chronic social defeat stress, a behavioral paradigm in which repeated exposure to aggressive mice causes social avoidance that is reversed by chronic but not acute antidepressant treatment. Although the WT mice show an increase in social interaction following chronic imipramine treatment, the KI mice fail to show a behavioral response to chronic treatment. These data suggest that pMeCP2 may be implicated in the antidepressant action of chronic imipramine. Finally, investigation of the brain regions in which pMeCP2 may be contributing to the behavioral response to chronic imipramine treatment revealed that chronic but not acute imipramine treatment induces pMeCP2 in the lateral habenula (LHb), a brain region involved in the behavioral response to stress and reward. Together, these data implicate a novel role for pMeCP2 in depression-like behavior and the behavioral response to chronic antidepressant treatment.</p> / Dissertation
37

Charakterisierung und experimentelle Therapien eines neuen Mausmodells für das Rett Syndrom / Characterization and experimental therapies of a new mouse model for Rett syndrome

Wegener, Jan Eike 12 October 2015 (has links)
Für das Rett Syndrom, eine der häufigsten genetischen Ursachen für mentale Retardie-rung bei Frauen, gibt es bisher keine kausale Therapie, obwohl gentherapeutische Studi-en mit konditionellen knockout Mäusen gezeigt haben, dass es sich um eine therapierbare Erkrankung handelt. Um neue Therapien entwickeln zu können, werden Mausmodelle benötigt, die auf den beim Menschen am häufigsten gefundenen Mutation beruhen. In der vorliegenden Arbeit wurde ein Mausmodell mit der häufigsten humanen Nonsense-Mutation R168X im Mecp2 Gen charakterisiert. Mit Hilfe dieses Mausmodells wurden dann die Therapieansätze der „Stop-Codon Readthrough-Therapie“ und einer Knochenmarktransplantation auf ihre Wirksamkeit in vitro und in vivo untersucht. Die Charakterisierung der Mauslinie zeigte, dass männliche MeCP2R168X-Mäuse im Gegensatz zu anderen MeCP2-Mausmodellen kein verkürztes MeCP2 Protein exprimieren. Desweiteren weisen männliche MeCP2R168X-Mäuse einen Phänotyp, inklu-sive der drastisch verkürzten Lebenspanne, auf, wie er bei bereits etablierten Mausmo-dellen für das Rett Syndrom beschrieben wurde. Dagegen zeigten weibliche, heterozy-gote MeCP2R168X-Mäuse nur einen sehr mild ausgeprägten Phänotyp verglichen mit bereits etablierten MeCP2-Mauslinien. Für die „Stop-Codon Readthrough-Therapie“ wurde die Effizienz der Aminoglykoside Geniticin, Gentamicin und Neomycin, der Komponenten NB54, NB84 und NB124, sowie der niedermolekularen Substanz PTC124 auf ihre Wirksamkeit bei der Induktion eines Readthroughs mit transfizierten HeLa-Zellen und MeCP2R168X/y-Mausohrfibroblasten in vitro untersucht. Dabei zeigte sich eine deutliche Steigerung der Readthrough-Effizienz der NB-Komponenten, gemessen an der detektierbaren Menge an MeCP2, mit zunehmender Generation (NB54 --> NB84 --> NB124) und gegenüber dem klinisch angewandten Gentamicin. Während die Behandlung mit Neomycin zu einem minimalen Readthrough-Produkt führte, zeigte die Behandlung mit PTC124 kei-nen messbaren Readthrough. Anschließend wurden männliche MeCP2R168X-Mäuse mit den in vitro getesteten Sub-stanzen, mit Ausnahme von Geniticin, behandelt. Die Expression eines MeCP2-Proteins voller Länge konnte durch keine der applizierten Substanzen induziert werden. Auch bei Behandlungen über einen längeren Zeitraum mit hohen Dosierungen, im Fall von Gentamicin nahe der LD50-Dosis und nachweisbarer intrazellulärer Aufnahme, konnte in den behandelten Tieren weder ein verkürztes noch ein MeCP2 Protein nativer Länge detektiert werden. Die Ergebnisse dieser Arbeit zeigen, dass für die „Stop-Codon Readthrough-Therapie“ für das Rett Syndrom neue Komponenten entwickelt werden oder andere Applikationswege gewählt werden müssen, da mit den derzeit verfügbaren Substanzen kein therapeutischer Erfolg erzielt werden kann. Im letzten Teil dieser Arbeit wurde die Theorie einer gestörten Phagozytose MeCP2-defizienter Mikroglia, sowie die Therapie von MeCP2-defizienten Mäusen durch eine Knochenmarktransplantation überprüft. Dabei konnte weder in vitro noch in vivo eine Veränderung der Phagozytoseaktivität der MeCP2-defizienten Mikroglia nachgewiesen werden, wie sie von Derecki und Kollegen publiziert wurde. Die Transplantation von gesundem Knochenmark führte bei männlichen MeCP2R168X-Tieren zu keiner Verlängerung der Überlebensspanne oder einer allgemeinen Abmilde-rung der Symptomatik, wie sie ebenfalls von Derecki und Kollegen publiziert wurde. Bei weiblichen Tieren führte die Transplantation gesunden Knochenmarks zu einer Verschlechterung der motorischen Fähigkeiten. Diese Ergebnisse sind im Einklang mit denen Ergebnissen der Arbeitsgruppen von An-drew Pieper, Antonio Bedalov und Jeffrey Neul, die in anderen Mausmodellen die Wir-kung der Knochenmarktransplantation untersuchten. Die Ergebnisse aller beteiligten Arbeitsgruppen legen daher nahe, dass eine Knochen-marktransplantation nach einer Ganzkörperbestrahlung keine geeignete Therapie für das Rett Syndroms darstellt.
38

Calcium and cAMP homeostasis determine network organisation of respiratory pre-Bötzinger neurons in Mecp2 null mice in vitro.

Skorova, Ekaterina 27 November 2012 (has links)
No description available.
39

Maintenance of Neuron Activity by Homeostatic Alterations in Receptors and Ion Channels in a Rett Syndrome Mouse Model

Oginsky, Max 18 December 2014 (has links)
Rett Syndrome (RTT) is a developmental disorder that affects numerous neuronal systems that underlie problems with breathing, movement, cognition and sleep. RTT is caused by mutations in the methyl-CpG-binding protein 2 (Mecp2) gene. MeCP2 is a ubiquitous protein that is found in all mature neurons and binds to methylated DNA to repress transcription; thus regulating protein expression levels in neurons. The mutations in Mecp2 affect a large number of proteins that are crucial for regulating neuronal activity. Despite the abnormal expression of many of these proteins, mice with a total loss of MeCP2 can live to adulthood and some people with RTT can live to a very late age as well. It is possible that mutations in the Mecp2 gene not only cause widespread defects, but also elicit neuroadaptive processes that may limit the impact of the MeCP2 dysfunction. To test this hypothesis we performed these studies in which we focused on how synaptic and membrane currents were altered to maintain normal neuronal activity in Mecp2-null mice. We show two examples from different neurons where neuroadaptations of ion channel expression allowed the neuron to remain viable. First, the properties of the nicotinic acetylcholine receptor (nAChR) current were altered in LC neurons in Mecp2-null mice. This was caused by changes in the nicotinic receptor subunit expression. Despite the changes in the nAChR current, the cholinergic modulation of LC neuron activity in WT and Mecp2-null mice were similar. Secondly, we show that the fast Na+ voltage-gated and the hyperpolarization-activated currents were altered in mesencephalic trigeminal V (Me5) propriosensory neurons. The changes in the hyperpolarization-activated current caused a smaller sag and post-inhibitory rebound. Opposite to what we expected, these cells were hyperexcitable. The hyperexcitability was due to changes in the fast Na+ voltage-gated current causing a decreased action potential threshold. Alterations in the ionic currents in Me5 neurons seem to be due to changes in subunit expression patterns. These results indicate that despite the complications caused by defects in the Mecp2 gene, neurons respond by rearranging receptor / ion channel expression. This reorganization allows neurons to remain viable despite the MeCP2 deficiency.
40

The Epigenome: Possible Mechanisms by which Early Life Stress May Prime Vulnerability towards Substance Use Disorder

January 2015 (has links)
abstract: Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS. / Dissertation/Thesis / Doctoral Dissertation Psychology 2015

Page generated in 0.0274 seconds