• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 7
  • 6
  • 4
  • Tagged with
  • 59
  • 59
  • 14
  • 14
  • 13
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ionic Conducting Ceramic Membrane Reactor for Partial Oxidation of Light Hydrocarbons

Akin, Figen Tulin 21 May 2002 (has links)
No description available.
22

Synthesis and Modification of MFI-Type Zeolite Membranes for High Temperature Hydrogen Separation and Water Gas Shift Membrane Reactions

Tang, Zhong 06 December 2010 (has links)
No description available.
23

Analysis of the hollow fiber membrane reactor using immobilized enzyme with deactivation

Hong, Eock Kee January 1986 (has links)
No description available.
24

CO<sub>2</sub>(H<sub>2</sub>S) membrane separations and WGS membrane reactor modeling for fuel cells

Huang, Jin 05 January 2007 (has links)
No description available.
25

Carbon dioxide-selective membranes and their applications in hydrogen processing

Zou, Jian 08 March 2007 (has links)
No description available.
26

Studies of the Ethanol Steam Reforming Reaction in a Membrane Reactor

Lim, Hankwon 28 November 2007 (has links)
The subject of this dissertation is advanced inorganic membranes and their application in membrane reactors (MRs). The reaction studied is the ethanol steam reforming (ESR) reaction using Co-Na/ZnO catalysts, chosen because of their high activity and stability. The Co-Na/ZnO catalysts were prepared by a co-precipitation method and it was found that promotion with a moderate amount of Na (1.0 wt%) produced a catalyst with stable ethanol conversion and product selectivity. Higher cobalt loading, higher W:E ratio, higher reaction temperature, and lower space velocity enhanced the conversion of ethanol to H2 and CO2 while reducing the formation of undesirable acetaldehyde. Acetaldehyde was a primary product of the ESR reaction. Studies of the effect of hydrogen permeance on the ESR reaction at 623 K were performed in MRs equipped with silica-based and palladium-based membranes of different hydrogen permeances, and the highest ethanol conversion enhancement of 44 % and hydrogen molar flow enhancement of 69 % compared to a packed-bed reactor (PBR) were obtained in a MR fitted with a membrane with the highest hydrogen permeance. An operability level coefficient (OLC), defined as the ratio of the hydrogen permeation and hydrogen formation rates, was suggested as a useful tool for estimating performances of MRs for different reforming reactions such as methane dry reforming (MDR), methane steam reforming (MSR), methanol steam reforming (MeSR), and ethanol steam reforming (ESR) reactions. Studies of the effect of pressure (1-10 atm) on the ESR reaction at 623 K were carried out in a PBR and a MR fitted with a Pd-Cu membrane prepared by an electroless plating of palladium and copper at 333 K. Comparison studies showed that increasing pressure in both reactors resulted in decreasing ethanol conversions and increasing hydrogen molar flows. Compared to the PBR, higher ethanol conversions and hydrogen molar flows were obtained in the MR for all pressures studied. Increasing pressure was favorable for enhancing ethanol conversion and hydrogen molar flow in the MR compared to the PBR, and the highest ethanol conversion enhancement of 48 % with the highest hydrogen molar flow enhancement of 55 % was obtained at 10 atm in the MR. / Ph. D.
27

Catalytic Transformation of Greenhouse Gases in a Membrane Reactor

Prabhu, Anil K. 04 April 2003 (has links)
Supported Ni and Rh catalysts were developed for the reforming of two greenhouse gases, methane and carbon dioxide to syngas (a mixture of hydrogen and carbon monoxide). This is an endothermic, equilibrium limited reaction. To overcome the thermodynamic limitations, a commercially available porous membrane (Vycor glass) was used in a combined reactor-separator configuration. This was to selectively remove one or more of the products from the reaction chamber, and consequently shift the equilibrium to the right. However, the separation mechanism in this membrane involved Knudsen diffusion, which provided only partial separations. Consequently, there was some transport of reactants across the membrane and this led to only marginal improvements in performance. To overcome this limitation, a new membrane was developed by modifying the Vycor substrate by the chemical vapor deposition of a silica precursor. This new membrane, termed Nanosil, provided high selectivity to hydrogen at permeabilities comparable to the support material. Application of this membrane in the combined reactor-separator unit provided higher conversions than that obtained using the Vycor membrane. / Ph. D.
28

Palladium/Alloy-based Catalytic Membrane Reactor Technology Options for Hydrogen Production: A Techno-Economic Performance Assessment Study

Ma, Liang-Chih 22 January 2016 (has links)
Hydrogen (H2) represents an energy carrier endowed with the potential to contribute to the design of a robust and reliable global energy system by complementing electricity as well as liquid fuels use in an environmentally responsible manner provided that the pertinent H2 production technologies (conventional and new ones) can reach techno-economically attractive performance levels in the presence of irreducible (macroeconomic, fuel market, regulatory) uncertainty. Indeed, the role of H2 in the global energy economy is widely recognized as significant in light also of fast-growing demand in the petrochemical and chemical processing sector as well as future regulatory action on greenhouse gas emissions. Pd and Pd/Alloy-based catalytic membrane reactor (CMR) modules potentially integrated into H2 production (HP-CMR) process systems offer a promising technical pathway towards H2 production with enhanced environmental performance in a carbon-constrained world. However, the lack of accumulated operating experience for HP-CMR plants on the commercial scale poses significant challenges. Therefore, any preliminary attempt to assess their economic viability is certainly justified. A comprehensive techno-economic performance assessment framework has been developed for HP-CMRs with CO2 capture capabilities. A functional Net Present Value (NPV) model has been developed first to evaluate the economic viability of HP-CMRs. The plant/project value of HP-CMR is compared to other competing technology options such as traditional coal-gasification and methane steam reforming-based hydrogen production plants with and without CO2 capture. Sources of irreducible uncertainty (market and regulatory) as well as technology risks are explicitly recognized and the effect of these uncertainty drivers on the plant’s/project’s value is taken into account using Monte-Carlo techniques. Therefore, more realistic distribution profiles of the plant’s economic performance outcomes are generated rather than single-point value estimates. It is shown that future regulatory action on CO2 emissions could induce appealing NPV-distribution profiles for HP-CMRs in the presence of uncertainty and technology risks. Finally, the valuation assessment is complemented with a sensitivity analysis for different representative values of the discount rate that span a reasonable range associated with business and financing risks. It apparently indicates that creatively structured financing mechanisms leading to a reduction of the cost of capital/discount rate could induce more appealing economic performance outcomes and valuation profiles. Furthermore, the proposed research work aims at the development of a methodological framework to assess the economic value of flexible alternatives in the design and operation of HP-CMR plants with carbon capture capabilities under the aforementioned sources of uncertainty. The main objective is to demonstrate the potential value enhancement associated with the long-term economic performance of flexible HP-CMR project investments by managing the uncertainty associated with future environmental regulations. Within the proposed context, promising design flexibility concepts for HP-CMR plants are introduced and operational as well as constructional flexibility options are identified and assessed. In particular, operational flexibility will be realized through periodic and temporary shutdowns of the carbon capture unit in response to regulatory uncertainties. Constructional flexibility will be realized by considering the installation of a carbon capture unit at three strategic periods: 1) installation in the initial design phase, 2) retrofitting at a later stage and 3) retrofitting with preinvestment. Monte Carlo simulations and financial analysis will be conducted in order to demonstrate that, in the presence of irreducible uncertainty, design flexibility options could lead to economic performance enhancement of HP-CMR plants by actively responding to the above sources of uncertainty as they get resolved over the plant’s lifetime.
29

Using a membrane reactor for the sulfur-sulfur thermochemical water-splitting cycle

Knapp, Nathan Michael 13 December 2011 (has links)
The hydrogen economy is a possible component of an energy future based on use of alternative and renewable energy sources, deemed desirable from the general consensus of the worldwide community that we do not want to further exacerbate the climate problems that we have introduced over the last two centuries from burning fossil fuels. The burning of fossil fuels emits toxic pollutants into the air, such as sulfur compounds and oxidized forms of nitrogen (NOx) but also emit copious amounts of the inert carbon dioxide. The latter is widely recognized as the major cause of the global warming phenomenon. For a hydrogen economy to develop, efficient means of hydrogen generation are required. Thermochemical cycles were conceived in the 1960s but only one operating pilot plant and no commercial installations based on the processes have been built. In the present work the use of a membrane reactor to enable the newly conceived Sulfur-Sulfur cycle, based on equations 1 - 3 is modeled. / 4H₂O+4SO₂ -> H₂S + 3H₂SO₄ Eq. 1 / H₂SO₄ -> SO₂ + H₂O + 1/2O₂ Eq. 2 / H₂S + 2H₂O -> SO₂ + 3H₂ Eq. 3 / The rationale for the use of a membrane reactor to enable the cycle is based on enhancing extent of reaction beyond its predicted equilibrium point due to the severely unfavorable thermochemical parameters for the steam reforming of hydrogen sulfide reaction (Eq. 3 above) which has a low equilibrium concentration of products. The membrane reactor will employ a molybdenum sulfide catalyst driving the steam reformation of hydrogen sulfide reaction and simultaneous extraction of hydrogen (one of the products) will allowing for the reaction to occur to higher extent. A computational model of a catalytic membrane reactor was constructed using the well-known finite element model package Comsol v4.1 in which a catalytic microchannel reactor separated from a sweep gas by a thin hydrogen permeable membrane is built and parametric sweeps to evaluate the effect of membrane transport parameters, pressure and gas feed velocities are calculated. Though the steam reforming of hydrogen sulfide reaction has a competing thermal cracking reaction, the present work focuses on modeling one reaction only (the steam reformation reaction) for simplicity. Fully dense metallic membranes with chemselective permeability to hydrogen are modeled with transport parameters derived from reported literature values for similar applications. The results show that employing a membrane reactor does significantly affect the completeness of the reaction by product extraction (if you do run the model with membrane transport set to zero, compare the extent at zero with extent at 3.6x10⁻⁶ mol.s⁻¹.m⁻²). The effect of changing sweep gas velocity is contingent on membrane properties, and membranes with small diffusion coefficients severely limit the ability of extraction of hydrogen from the feed. Therefore, it is more important that membranes with very high hydrogen permeability be employed in designing a reactor to implement this process, allowing for effective hydrogen separation and high conversion of the reactants in the process. Reactor pressure has minimal effect on the extent of reaction and therefore reactors designed to implement the process may be designed to operate at close to ambient pressure. / Graduation date: 2012
30

Enzimas microbianas na conversão da sacarose em frutose e ácido glicônico usando reatores descontínuo-alimentado e contínuo com membrana / Conversion of sucrose into fructose and gluconic acid by microbial enzymes using fed-batch and membrane continuous reactors

Taraboulsi Junior, Fadi Antoine 26 July 2010 (has links)
A sacarose é uma matéria-prima em franca expansão de produção no Brasil, seu maior produtor e exportador. Essa molécula pode ser convertida, através de um processo multienzimático, em produtos de maior valor agregado: frutose e ácido glicônico, os quais são importados pelo país, e amplamente utilizados em indústrias químicas, de produção de fármacos e setores alimentícios. Neste estudo, avaliou-se a hidrólise da sacarose pela invertase assim como a conversão da glicose em ácido glicônico, pela ação da glicose oxidase, ambas em processo descontínuo-alimentado. A solução de substrato (64g/L-sacarose; 32g/L-glicose) foi adicionada segundo as seguintes leis: constante, linear crescente, linear decrescente, exponencial crescente e exponencial decrescente. No caso da glicose, foi necessária a utilização de enzima auxiliar, a catalase, para degradar a água oxigenada formada durante a conversão da glicose. Mediante os resultados dos testes com os dois substratos, realizou-se teste de conversão direta da sacarose em frutose e ácido glicônico, utilizando-se invertase, glicose oxidase e catalase em regime descontínuo-alimentado, com alimentação linear decrescente (melhor resultado para ambos os substratos). No procedimento contínuo, alvo principal do trabalho, utilizou-se reator com membrana, da marca MILLIPORE ®, integrando em uma única etapa a conversão catalítica, a separação/concentração do produto e a recuperação do biocatalisador. A temperatura foi controlada por circulação de água, tendo acoplado uma bomba peristáltica (para controlar a vazão de alimentação do substrato) e um sistema de pressurização. O reator operou com membrana de ultrafiltração (corte molecular = 100 kDa) e foi mantido sob agitação constante. Os parâmetros de partida foram, a princípio, fixados de acordo com os valores otimizados no reator descontínuo-alimentado com o emprego simultâneo das enzimas. / Sucrose is a commodity largely produced in Brazil and one of the most used and commercialized product in food industry. It can be converted through a multienzyme process in fructose and gluconic acid, which have commercial values higher than sucrose. Both products are imported by Brazil, being largely employed in the chemical, food and pharmaceutical industry. This work dealt with the hydrolysis of sucrose by invertase into fructose and glucose, and the oxidation of glucose to gluconic acid by glucose oxidase and catalase. Catalase was added in order to decompose the hydrogen peroxide an inhibitor of glucose oxidase formed as by-product of the oxidation. Two processes were employed. Fed-batch in which the hydrolysis and oxidation reactions were carried out separately by adding invertase followed by glucose oxidase and catalase was conducted by adding the solution of substrate according to a constant, increasing linear, decreasing linear, increasing exponential or decreasing exponential mode. The best fed-batch performance was attained through the decreasing linear addition of sucrose (64g/L) and glucose (32g/L). Setting this kind of addition and using all enzymes simultaneously, the direct conversion of sucrose to fructose and gluconic acid occurred at a yield of 72%. The continuous process was carried out in a cell-type membrane reactor (membrane cut off = 100 kDa), in which the sucrose conversion was made by using all enzymes simultaneously, leading to a final yield of about 76%

Page generated in 0.0672 seconds