• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 12
  • 11
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

RICH-1, a Multifunctional RhoGAP Domain-containing Protein, Involved in Regulation of the Actin Filament System and Membrane-trafficking

Richnau, Ninna January 2003 (has links)
<p>The Rho GTPases, which are related to the Ras family of proto-oncogenes, have been found to have important roles in regulating the morphogenic and migratory properties of eukaryotic cells. In addition, these proteins have been shown to regulate aspects of cell signaling, cell growth, cell division and cell survival. The Rho GTPases cycle between inactive GDP-bound and active GTP-bound states. In resting cells, Rho GTPases are sequestered in the cytoplasm by forming an inactive complex with guanine dissociation inhibitors (GDIs), and are, thus, unable to exchange guanine nucleotides. Rho GTPases exchange guanine nucleotides at slow rates <i>in vivo</i>, and these reactions can be catalyzed by two different classes of proteins. Upon cell activation, guanine exchange factors stimulate the exchange of GTP for GDP and thereby activate the Rho GTPases, whereas the GTPase activating proteins turn off the Rho GTPase by stimulating their inherent GTP-hydrolysis activity. The active Rho GTPase associates with so-called effector proteins, which in turn mediate a plethora of responses.</p><p>In recent years a great number of Rho GTPase effectors have been identified. The Cdc42-interacting protein 4 (CIP4) is one such protein, and this thesis has focused on elucidating the role of this protein in Rho GTPase regulated activities resulting in changes in the organization of the actin filament system. Changes in actin dynamics are required for many cellular activities, such as cell migration, cytokinesis and membrane-trafficking. CIP4 is a member of the Pombe Cdc15 homology (PCH) family of proteins. Many PCH proteins been proposed to cooperate with so-called formin homology proteins to induce changes in actin dynamics resulting in cytokinesis. We show that CIP4 interacts with the diaphanous-related formin DAAM1 (Disheveled associated activator of morphogenesis 1). DAAM1 appeared to influence both changes in actin dynamics and microtubule dynamics, possibly by integrating signals from CIP4, Src and the Rho GTPases Rac, Cdc42</p><p>The RhoGAP domain-containing protein RICH-1 (Rho GAP interacting with CIP4 homologoues-1) was isolated in a yeast two hybrid screen for proteins binding to CIP4. RICH-1 was shown to down-regulate the Rho GTPases Cdc42 and Rac1. In addition to the RhoGAP domain, RICH-1 possesses a proline-rich motif which confers binding to a variety of Src homology 3 (SH3) domain-containing proteins including CIP4, FBP17, Src, Abl and CIN85. Furthermore, RICH-1 exhibits a BIN/amphiphysin/Rvsp (BAR) domain which associates with membrane lipids, and in addition this domain was shown to deform liposomes in an in vitro assay, which is thought to mimic the deformation of cellular lipid bilayers, for example the invagination of the plasma membrane during endocytosis. Our results suggest a role for RICH-1 in intracellular membrane-trafficking events. RICH-1 was in addition shown to interact with the SH3 domains of two BAR domain-containing proteins, endophilin A1 and amphiphysin, which induce deformation of the plasma membrane during the specialized clathrin-mediated endocytosis. In conclusion, our data supports the notion that RhoGAPs are multi-functional proteins, fulfilling not only the role as downregulators of Rho GTPase activity, but also as signal transducers of numerous vital cellular processes.</p>
32

RICH-1, a Multifunctional RhoGAP Domain-containing Protein, Involved in Regulation of the Actin Filament System and Membrane-trafficking

Richnau, Ninna January 2003 (has links)
The Rho GTPases, which are related to the Ras family of proto-oncogenes, have been found to have important roles in regulating the morphogenic and migratory properties of eukaryotic cells. In addition, these proteins have been shown to regulate aspects of cell signaling, cell growth, cell division and cell survival. The Rho GTPases cycle between inactive GDP-bound and active GTP-bound states. In resting cells, Rho GTPases are sequestered in the cytoplasm by forming an inactive complex with guanine dissociation inhibitors (GDIs), and are, thus, unable to exchange guanine nucleotides. Rho GTPases exchange guanine nucleotides at slow rates in vivo, and these reactions can be catalyzed by two different classes of proteins. Upon cell activation, guanine exchange factors stimulate the exchange of GTP for GDP and thereby activate the Rho GTPases, whereas the GTPase activating proteins turn off the Rho GTPase by stimulating their inherent GTP-hydrolysis activity. The active Rho GTPase associates with so-called effector proteins, which in turn mediate a plethora of responses. In recent years a great number of Rho GTPase effectors have been identified. The Cdc42-interacting protein 4 (CIP4) is one such protein, and this thesis has focused on elucidating the role of this protein in Rho GTPase regulated activities resulting in changes in the organization of the actin filament system. Changes in actin dynamics are required for many cellular activities, such as cell migration, cytokinesis and membrane-trafficking. CIP4 is a member of the Pombe Cdc15 homology (PCH) family of proteins. Many PCH proteins been proposed to cooperate with so-called formin homology proteins to induce changes in actin dynamics resulting in cytokinesis. We show that CIP4 interacts with the diaphanous-related formin DAAM1 (Disheveled associated activator of morphogenesis 1). DAAM1 appeared to influence both changes in actin dynamics and microtubule dynamics, possibly by integrating signals from CIP4, Src and the Rho GTPases Rac, Cdc42 The RhoGAP domain-containing protein RICH-1 (Rho GAP interacting with CIP4 homologoues-1) was isolated in a yeast two hybrid screen for proteins binding to CIP4. RICH-1 was shown to down-regulate the Rho GTPases Cdc42 and Rac1. In addition to the RhoGAP domain, RICH-1 possesses a proline-rich motif which confers binding to a variety of Src homology 3 (SH3) domain-containing proteins including CIP4, FBP17, Src, Abl and CIN85. Furthermore, RICH-1 exhibits a BIN/amphiphysin/Rvsp (BAR) domain which associates with membrane lipids, and in addition this domain was shown to deform liposomes in an in vitro assay, which is thought to mimic the deformation of cellular lipid bilayers, for example the invagination of the plasma membrane during endocytosis. Our results suggest a role for RICH-1 in intracellular membrane-trafficking events. RICH-1 was in addition shown to interact with the SH3 domains of two BAR domain-containing proteins, endophilin A1 and amphiphysin, which induce deformation of the plasma membrane during the specialized clathrin-mediated endocytosis. In conclusion, our data supports the notion that RhoGAPs are multi-functional proteins, fulfilling not only the role as downregulators of Rho GTPase activity, but also as signal transducers of numerous vital cellular processes.
33

The PI5P 4-kinase ortholog PPK-2 of Caenorhabditis elegans acts in synaptic transmission and neuronal membrane trafficking / Die PI5P 4-Kinase PPK-2 von Caenorhabditis elegans agiert in synaptischer Transmission und neuronalem Membrantransport

Sassen, Wiebke Anna 03 May 2010 (has links)
No description available.
34

Rôle de la phospholipase D1 dans le trafic membranaire : implication dans le développement neuronal et l'exocytose régulée / Role of phospholipase D1 in membrane trafficking : involvement in neural development and regulated exocytosis

Ammar, Mohamed Raafet 16 September 2013 (has links)
La croissance neuritique est un mécanisme complexe qui fait toujours l’objet d’intenses investigations. Les donnés actuelles ont permis de mettre en évidence l’implication de trois mécanismes principaux dans la croissance neuritique : i) la dynamique du cytosquelette, ii) le trafic intracellulaire et l’apport membranaire au niveau du cône de croissance et iii) la signalisation cellulaire, principalement via la voie MAPK-ERK1/2, qui abouti à la régulation de la transcription.La PLD1 et son produit l’acide phosphatidique semblent être au centre de voies majeures impliquées dans le développement neuronal. Mes travaux ont permis d’approfondir nos connaissances sur le rôle cellulaire de la PLD1 au cours de la croissance neuritique. J’ai montré que la PLD1 en collaboration avec la kinase RSK2 régule la fusion des vésicules positives pour Ti-VAMP/VAMP7 au cours de la croissance neuritique. D’autre part, j’ai établi que la PLD1 joue un rôle important dans le maintien de la signalisation endosomale de la voie MAPK-ERK1/2-RSK2-CREB induite par les neurotrophines. J’ai également montré que la PLD1 régule l’activation de mTOR/p70S6K en réponse au BDNF. La dérégulation des voies MAPK-ERK1/2 et mTOR/p70-S6K pourraient être à la base de la réduction de l’arborisation dendritique et de la maturation des épines dendritique observée dans les neurones corticaux Pld1-/- en culture. En plus de l’implication de RSK2 dans la régulation de la PLD1, j’ai également montré que la PLD1 régule l’activation de RSK2 en réponse aux neurotrophines, probablement via une boucle de rétrocontrôle. Ainsi les donnés obtenus suggèrent un lien fort entre les deux protéines au cours du développement neuronal. A la lumière de ces donnés, un dysfonctionnement de ce mécanisme pourrait expliquer le retard mental observé chez les patients atteints du syndrome de Coffin-Lowry causé par la perte de l’activité kinase de RSK2. D’autre part, les résultats obtenus suggerent un rôle de la PLD1 dans l’exocytose des vésicules. / Neurite outgrowth is a complex mechanism that is still the subject of intense investigation. Current given helped to highlight the involvement of three main mechanisms in neurite growth : i) the dynamics of the cytoskeleton, ii) the intracellular membrane trafficking and membrane supply at the growth cone and iii) cell signaling , mainly via the MAPK-ERK1 / 2, which resulted in the regulation of transcription. The PLD1 and its product the phosphatidic acid (PA) appear to be at the center of the major pathways involved in neuronal development. My work has deepened our understanding of the cellular role of PLD1 during neurite outgrowth. I showed that PLD1 together with the protein kinase RSK2 regulates the fusion of vesicles positive for Ti-VAMP/VAMP7 during neurite outgrowth. On the other hand, I have determined that PLD1 plays an important role in maintaining the endosomal signaling pathwayMAPK-ERK1/2-RSK2-CREB induced by neurotrophin. I also showed that PLD1 regulates the activation of mTOR/p70S6K in response to BDNF. Deregulation of MAP -ERK1 / 2 and mTOR/p70-S6K pathways could be the basis for the reduction of dendritic arborization and maturation of dendritic spines observed in cortical neurons Pld1-/- culture. In addition to the involvement of RSK2 in the regulation of PLD1, I also showed that PLD1 regulates RSK2 activation in response to neurotrophin, possibly via a feedback loop. Thus given obtained suggest a strong link between the two proteins during neuronal development. In the light of these data, alteration of this mechanism could explain the mental retardation observed in patients with Coffin -Lowry syndrome caused by loss of the kinase activity of RSK2. On the other hand, our results suggest a role for PLD1 in exocytosis of vesicles.
35

Contrôle de AP-1 sur le trafic de E-Cadhérine chez Drosophila melanogaster / AP-1 dependent E-Cadherin trafficking in Drosophila melanogaster

Loyer, Nicolas 16 October 2014 (has links)
L'intérieur des cellules eucaryotes est compartimenté en organites qui échangent des lipides et protéines entre eux et avec la membrane plasmique via le trafic vésiculaire. Dans les cellules polarisées comme les cellules épithéliales, dont la membrane plasmique est divisée en un pôle apical et un pôle basolatéral séparés par une ceinture de jonctions, le trafic vésiculaire est contrôlé par des systèmes de tri polarisé, permettant d'adresser les protéines appropriées au domaine membranaire approprié. Dans ces cellules épithéliales, le complexe adaptateur AP-1 contrôle l'adressage au pôle basolatéral et le trafic de la molécule d'adhésion E-Cadhérine, une protéine transmembranaire des jonctions d'adhérence. Il a de plus été démontré dans les cellules intestinales du nématode C. elegans et des mammifères qu'AP-1 est nécessaire au maintien de la polarité épithélial. J'ai étudié ces fonctions d'AP-1 chez l'organisme modèle Drosophila melanogaster. J'ai montré qu'AP-1 contrôle aussi le trafic de E-Cadhérine chez la Drosophile mais n'est pas requis pour la maintenance de la polarité de l'épithélium folliculaire, un épithélium entourant le cyste germinal femelle de 16 cellules au cours de l'ovogénèse chez la Drosophile. Ces expériences dans ce tissu m'ont amené à découvrir une nouvelle fonction de E-Cadhérine dans le cyste germinal. Les cellules de ce cyste sont connectées entre elles par des ponts cytoplasmiques stabilisés à l'issue de cytocinèses incomplètes. J'ai montré que les cellules du cyste mutantes pour AP-1 présentent un phénotype de multinucléation dû au décrochage des ponts cytoplasmiques. Ce phénotype corrèle avec un défaut d'adressage de E-Cadhérine dépendant d'AP-1 à la membrane plasmique entourant ces ponts, via les endosomes de recyclage. E-Cadhérine y est nécessaire pour leur ancrage à la membrane plasmique, un rôle qui avait été jusque-Là masqué par l'expression ectopique compensatoire de N-Cadhérine dans les mutants E-Cadhérine. Ce rôle d'E-Cadhérine passe par l'organisation de protrusions membranaires présentant l'aspect et contenant certains marqueurs protéiques des microvillosités observées au pôle apical des cellules épithéliales. / Eukaryotic cells are compartmentalized in organelles. Lipidic and proteic exchanges between organelles and the plasma membrane are controlled by vesicular trafficking. In polarised cells such as epithelial cells, whose plasma membrane is divided into an apical and a basolateral pole separated by a junctional belt, appropriate targeting of proteins to appropriate poles relies on polarised sorting mechanisms controlling vesicular trafficking. In these cells, the clathrin adaptor complex AP-1 controls basolateral targeting and trafficking of the adhesion molecule E-Cadherin, a transmembrane adherens junctions protein. AP-1 is furthermore necessary for epithelial polarity maintenance in intestinal epithelial cells in the nematode C. elegans and mammals. I studied AP-1 functions in the model organism Drosophila melanogaster. I showed AP-1 also controls E-Cadherin trafficking in Drosophila but is not required for polarity maintenance in follicular cells, an epithelium surrounding the female germline cyst during oogenesis. Experiments in this tissue led me to discover a new E-Cadherin function in the germline cyst. Germline cyst cells are interconnected by cytoplasmic bridges stabilised after incomplete cytokinesis. I showed AP-1 mutant cyst cells were multinucleated due to a detachment of cytoplasmic bridges from the plasma membrane. This phenotype correlated with an E-Cadherin AP-1-Dependent targeting defect from recycling endosomes to the plasma membrane surrounding these bridges. E-Cadherin is necessary for their anchoring to the plasma membrane, a role that was hidden by ectopic compensatory expression of N-Cadherin in E-Cadherin mutants. This new role is mediated by E-Cadherin-Dependent organisation of membrane protrusions similar in aspect with and containing proteins of microvillosities present at the apical pole of epithelial cells.
36

Génétique et physiopathologie de la maladie de Charcot-Marie-Tooth de type 4H / Genetics and physiopathology of CMT4H

Esteve, Clothilde 18 December 2014 (has links)
CMT4H est une forme de CMT démyélinisant, à transmission autosomique récessive, pour laquelle notre équipe a identifié le gène responsable. Il s'agit du gène FGD4, codant pour FRABIN, protéine de 766 AA possédant 5 domaines fonctionnels: le domaine FAB de liaison à l'actine, un domaine DH responsable de l'échange GDP/GTP, et trois domaines de liaison avec des polyphosphoinositides. C'est une RhoGEF, connue pour activer les RhoGTPases Cdc42 et Rac1.Mon projet de thèse vise à mieux comprendre les bases moléculaires et les mécanismes physiopatologiques qui sous-tendent CMT4H grace à l'étudie de modèles cellulaires et murins. Dans un premier temps, j'ai identifié deux nouvelles mutations dans le gène FGD4. J'ai pu démontrer l'impact fonctionnel des mutations p.Met298fs*8 et p.Ala172Glyfs*27 et une absence totale la protéine dans les fibroblastes de ces patients, donnant lieu à une augmentation de l'activation de Cdc42.L'étude d'un modèle murin d'ablation conditionnelle de FGD4 dans les cellules de Schwann, m'a permis de démontrer la présence d' anomalies myéliniques dans le nerf périphérique de ces souris, ainsi qu'une diminution de l'activation de Cdc42.J'ai également montré, que dans les fibroblastes, FRABIN était localisée au niveau des endomembranes et que l'endocytose semblait déficient dans des cellules de patients. Finalement, l'identification de SNX3,comme partenaire protéique de FRABIN constitue un argument supplémentaire fort en faveur du rôle de FRABIN dans le trafic membranaire.La poursuite de l'étude de nos modèles et de modèles iPS ,permettra de poursuivre l'exploration de ces mécanismes et de mieux comprendre la physiopathologie de la forme CMT4H. / Charcot-Marie-Tooth neuropathy type 4H (CMT4H) is an inherited, autosomal recessive, peripheral neuropathy characterized by demyelination of sensory-motor nerves and due to mutations in FGD4. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor (GEF), specific for the GTPase Cdc42, composed of five functional domains: an N-terminal F-actin binding (FAB) domain, one Dbl homology (DH) domain, two pleckstrin homology (PH) domains, and one cysteine-rich FYVE domain.The main goal of my project is to understand the mechanisms leading to the pathology in CMT4H. To this purpose, I studied both cellular and mouse models.First, molecular screening of FGD4 allowed us to identify two additional mutations in FGD4. We also demonstrated a complete absence of the 105 kDa FRABIN isoform in patients homozygous for splicing and frameshift mutations, which unexpectedly was related to abnormally high levels of Cdc42 activation.The study of a mouse model with conditional ablation of fgd4 in Schwann cells, that we have generated, demonstrates the presence of abnormal myelin outfoldings in sciatic nerves from KO mice, which might be linked to decreased levels of Cd42 in mouse sciatic nerves. Finally, altered recycling of transferrin receptors in patients, with complete absence of FRABIN described above, as well as the identification of SNX3, a protein involved in endosomal trafficking, as a partner for FRABIN are new elements that I provide in favour of a role for FRABIN in membrane and cellular trafficking.Still, there are many points to understand, notably the relation between the RhoGTPase and the endosomal pathways, and the study of our models will help answer these questions.
37

Rit2-Dependent Dopamine Transporter Endocytosis: Intrinsic Mechanism and In Vivo Impact

Fagan, Rita R. 30 April 2020 (has links)
Dopamine (DA) governs movement, sleep, reward, and cognition. The presynaptic dopamine transporter (DAT), clears released DA, controlling DA signaling and homeostasis. Genetic DAT ablation causes hyperactivity, sleep reduction, and altered psychostimulant response. DAT surface expression is dynamic; DAT constitutively internalizes and recycles to and from the plasma membrane, and acute PKC activation stimulates DAT endocytosis. Cell line experiments demonstrated that PKC-stimulated DAT endocytosis requires Ack1 inactivation and the GTPase, Rit2. How Rit2 controls PKC-dependent DAT internalization, or whether regulated DAT endocytosis impacts behavior, is unknown. Here, I present data supporting that PKC activation stimulates Rit2/DAT dissociation, mediated by the DAT N-terminus. Further, Ack1 and Rit2 function independently to facilitate PKC-stimulated DAT internalization. Moreover, PKC-stimulated DAT endocytosis was limited to ventral striatum in ex vivo slice preparations, and required Rit2. Our lab previously demonstrated that certain DA-dependent behaviors required DAergic Rit2 in mice, however whether this was due to perturbed PKC-stimulated DAT internalization, or DAT-independent Rit2 function(s) remains untested. To address this, I turned to Drosophila and its Rit2 homolog Ric. I found that Ric and dDAT proteins interact in cell lines, and that constitutively active Ric (RicQ117L) increased dDAT function in cultured cells and ex vivo whole fly brains. However, neither DAergic Ric knockdown nor RicQ117L altered overall locomotion or sleep, suggesting that these fundamental behaviors do not require DAergic Ric. Together, these results expand our understanding of intrinsic mechanisms controlling DAT endocytosis, and their impact on behavior.
38

Rôle de GTPase de type Rab, Ypt6, chez le pathogène fongique opportuniste de l’homme, Candida albicans / Role of the Rab GTPase, Ypt6, in the human fungal pathogen Candida albicans

Wakade, Rohan Sanjay 04 September 2017 (has links)
Candida albicans est un organisme commensal présent dans le microbiote, qui peut cependant provoquer des infections superficielles mais aussi systémiques, engageant alors le pronostic vital chez les patients immunodéprimés. La transition entre forme bourgeonnante et forme filamenteuse hyphale hautement polarisée, ce qui nécessite une réorganisation du cytosquelette et un trafic membranaire soutenu, est associée à la virulence. Chez les eucaryotes, les GTPases de la famille Rab (Ras related protein in the brain) et leurs régulateurs jouent un rôle central dans le trafic membranaire. L'objectif de ce travail est de comprendre le rôle de ces protéines, en particulier de Ypt6, l'homologue de Rab6 humain, dans la transition morphologique et la virulence de C. albicans. Dans ce but, j'ai construit des mutants « perte de fonction » et déterminé que YPT6 n'est pas essentiel à la viabilité, mais est critique pour l'intégrité de la paroi cellulaire et la croissance hyphale invasive ; les hyphes du mutant ypt6 sont plus courtes que celles de la souche sauvage. En outre, YPT6 est critique pour la virulence dans deux modèles murins de candidose. Lors de la croissance hyphale, Ypt6 est co-localisé avec Arl1, une GTPase de la famille Arf (ADP Ribosylation Factor), également nécessaire pour la croissance hyphale et la virulence de C. albicans. De plus, la surexpression de YPT6 compense spécifiquement le défaut de croissance hyphale du mutant de délétion arl1, mais pas l'inverse. La délétion de YPT6 résulte également en une augmentation du nombre de citernes Golgiennes, suggérant que l'intégrité du Golgi est altérée dans ce mutant. Utilisant de l'imagerie sur cellules vivantes, j'ai montré que la distribution d’Abp1 (Actin binding protein 1), qui est un rapporteur des sites d’endocytose, est aussi altérée dans le mutant ypt6, en ceci qu’elle n’est plus restreinte à l’apex de l’hyphe, comme observé dans les cellules sauvages. Ces données suggèrent que le défaut de maintien de la croissance hyphale du mutant ypt6 est au moins en partie associé à une altération de la distribution des sites d’endocytose. En résumé, j’ai identifié le rôle de Ypt6 dans la croissance hyphale invasive et la virulence du pathogène fongique opportuniste de l’homme C. albicans, et mis en évidence une interaction entre deux GTPases, Ypt6 et Arl1, lors du processus de croissance hyphale. / Candida albicans is a harmless constituent of the human microbiota that causes superficial infections as well as life threatening infections in immune compromised individuals. The transition from a budding form to the highly polarized hyphal form is associated with virulence and requires cytoskeleton reorganization and sustained membrane trafficking. In a range of eukaryotes, Ras related protein in the brain (Rab) G proteins and their regulators have been shown to play a central role in membrane traffic. The objective of this work is to understand the role of Rab proteins, in particular Ypt6, the homolog of Human Rab6, in the morphological transition and virulence of C. albicans. To this aim, I generated loss of function mutants and found that YPT6 is not essential for viability, yet was critical for cell wall integrity and invasive hyphal growth, with ypt6 hyphal filaments shorter compared to that of the wild type (WT). Furthermore, YPT6 was important for virulence in two murine candidiasis models. I determined that Ypt6 was localized at the late Golgi compartment during hyphal growth, where it co-localized with Arl1, a small GTPase of the Arf (ADP Ribosylation Factor) family, also required for hyphal growth and virulence. Interestingly, overexpression of YPT6 specifically rescued the hyphal growth defect of the arl1 mutant, but not the converse. Further characterization of the ypt6 deletion mutant showed that the number of Golgi cisternae is increased in this mutant compared to that of WT strain, suggesting an alteration of Golgi integrity. In addition, using live cell imaging I showed that the distribution of Actin binding protein 1 (Abp1), which is a reporter for actin patches, was altered in the ypt6 mutant, in that it was no longer restricted to the tip of the filament, as is observed in WT cells. These data suggest that the defect in hyphal growth maintenance of the ypt6 deletion mutant is at least partly associated with an alteration of the distribution of endocytic sites. Thus, I identified a critical role of Ypt6 during invasive hyphal growth and virulence in the human fungal opportunistic pathogen C. albicans and revealed an interaction between Ypt6 and Arl1 in the hyphal growth process.
39

Subcelulární lokalizace a úloha komplexu exocyst v savčích buňkách během cytokineze / Subcelulární lokalizace a úloha komplexu exocyst v savčích buňkách během cytokineze

Ulrychová, Lenka January 2011 (has links)
Cytokinesis is the last step of cell cycle when two individual daughter cells separate in process called abscission. This process involves various cellular membrane structures such as endoplasmic reticulum or trans-Golgi network. Moreover, recent investigation has also highlighted an important role of recycling endosomes. The membrane dynamics appear to be important during cell division especially for the formation of new plasma membrane between two daughter cells. Numerous studies suggest that cytokinesis is tightly linked with highly sophisticated transmembrane shuttle that is controlled by Ras-superfamily members such as Rab and Ral proteins. Moreover, during last years has also been revealed the involvement of tethering factors which mediate the fusion of intracellular vesicles with the target plasma membrane. The best known tethering factor is the evolutionary conserved exocyst complex found in all eukaryotic cells. This protein complex is composed of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) and was found to interact with members of Ras- superfamily suggesting its involvement in the regulation of cytokinesis. Although the exact mechanism remains shrouded in fog this work suppose the possible interactions among Ras- like proteins and exocyst members which may...
40

Negative Regulation of Polarity Establishment in Saccharomyces cerevisiae

Miller, Kristi E. 24 June 2019 (has links)
No description available.

Page generated in 0.474 seconds