• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 21
  • 20
  • 9
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 160
  • 55
  • 37
  • 36
  • 33
  • 31
  • 23
  • 22
  • 22
  • 21
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Controle de vibrações em rotores flexíveis utilizando fios de liga com memória de forma / Vibration control of a flexible rotor suspended by shape memory alloy wires

Geronel, Renan Sanches 28 September 2018 (has links)
Submitted by Renan Sanches Geronel (renansanches91@gmail.com) on 2018-10-09T17:02:12Z No. of bitstreams: 1 geronel_rs_me_ilha.pdf: 5620689 bytes, checksum: 950dc58c8b56a9f24a9a656722b4396d (MD5) / Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-10-09T19:55:34Z (GMT) No. of bitstreams: 1 geronel_rs_me_ilha.pdf: 5647462 bytes, checksum: dda190eff69aad90c5113e27f486d1b0 (MD5) / Made available in DSpace on 2018-10-09T19:55:34Z (GMT). No. of bitstreams: 1 geronel_rs_me_ilha.pdf: 5647462 bytes, checksum: dda190eff69aad90c5113e27f486d1b0 (MD5) Previous issue date: 2018-09-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os sistemas rotativos estão frequentemente sujeitos a excitações externas e internas que provocam vibrações indesejáveis, colocando em risco a própria integridade estrutural do sistema e até mesmo a saúde dos usuários. No âmbito industrial, por exemplo, a atenuação das vibrações pode permitir aos sistemas rotativos, uma operação mais eficiente e segura, proporcionando manutenções periódicas menos frequentes evitando com isso gastos dispendiosos. Neste contexto, o controle de vibrações tem sido objeto de preocupação de inúmeros centros de pesquisa e a literatura especializada é rica em propostas de soluções para esta questão. Este trabalho apresenta uma proposta teórica de um controle semi-ativo de vibrações em rotores flexíveis usando fios de liga com memória de forma (LMF). O rotor em questão é apoiado sobre dois mancais e um deles é suspenso por fios de LMF, cuja finalidade é promover o amortecimento das vibrações laterais presentes no sistema rotativo decorrentes de forças de perturbação, notadamente das forças de desbalanceamento. O controle proposto tem por objetivo possibilitar a passagem do rotor pelas velocidades críticas, com segurança. / Rotational systems are often subjected to external and internal excitations which cause undesired vibrations and risk to the structural integrity of the system and the user's health. In the industrial eld, the vibration attenuation may allow rotating systems more e ciency and safety, making periodical maintenance less frequent and reducing costs. In this context, the vibration control has been a concern for many research centers and the specialized literature is rich in solution proposals for this subject. This study presents a theoretical proposal of a semi-active control of vibrations in exible rotors using shape memory alloy (SMA) wires. The rotor is supported by two bearings and one of them it is suspended by SMA wires to promote attenuation of the lateral vibration present in rotating machines due to disturbance forces, especially unbalancing forces. The proposed theory control has a goal to allow the rotor passing through critical speeds safely. / CAPES - DS
112

Développement d'un instrument endodontique en alliage à mémoire de forme monocristallin cuivreux / Development of an endodontic instrument based on a single-crystal shape memory alloy

Vincent, Marin 03 February 2017 (has links)
De nombreuses avancées ont été réalisées en termes de géométries instrumentales, mouvements de travail et procédés de fabrication des limes endodontiques. Cependant, peu de recherches se sont tournées vers l’utilisation d’alliages à mémoire de forme (AMF) autres que le Nickel-Titane (NiTi). Ce travail se propose de développer un instrument endodontique constitué d’un nouvel AMF aux propriétés mécaniques et antimicrobiennes très prometteuses : le CuAlBe monocristallin. Après une première analyse par éléments finis des paramètres géométriques adéquats pour une lime endodontique en AMF monocristallin à base de CuAlBe, plusieurs prototypes ont été fabriqués puis testés en rotation continue selon un protocole de pénétration / retrait (P/R) dans des canaux artificiels. Des limes endodontiques en NiTi, déjà commercialisées, ont été également testées avec le même protocole. L’objectif de ces recherches était de montrer que les instruments endodontiques en CuAlBe monocristallin présentaient des performances mécaniques équivalentes à ceux en NiTi, en plus de leurs propriétés antimicrobiennes / Many advances have been made in terms of instrumental geometry, working motion and manufacturing processes of endodontic files. However, since the discovery of Nickel-Titanium (NiTi) shape memory alloys (SMA), few research has been carried out on new SMAs. In this context, this work aims to develop an endodontic instrument machined from a new SMA with very promising mechanical and antimicrobial properties: the single crystal CuAlBe. Following a finite element analysis in order to determine adequate geometric parameters for a single crystal CuAlBe SMA endodontic instrument, prototypes were machined and tested following a continuous rotation penetration / removal (P/R) protocol in artificial canals. Endodontic files made of NiTi SMA, already commercialized, were also tested with the same protocol. The aim of this researches is to show that CuAlBe endodontic instruments could lead equivalent mechanical performances to NiTi instruments in addition of their antimicrobial properties
113

Controle angular ativo de um aerofólio adaptativo utilizando fios de liga de memória de forma /

Maesta, Marcelo Francisco. January 2016 (has links)
Orientador: Vicente Lopes Junior / Resumo: A busca por aeronaves capazes de modificar sua geometria melhorando suas características aerodinâmicas incentivou diversos autores a sugerirem modelos de asas adaptativas. Tais modelos utilizam atuadores leves de modo a substituir os atuadores clássicos convencionais sem, no entanto, comprometer a e ciência de voo da aeronave. Dentre os materiais utilizados para isto se destacam as ligas de memória de forma (Ni-Ti), que são capazes de converter energia térmica em energia mecânica e, uma vez deformadas, podem retornar a sua condição original de forma através de seu aquecimento. Neste contexto, o presente trabalho objetiva controlar a posição angular de um aerofólio utilizando para isto um par de os de liga de memória de forma. No modelo de asa proposto, deseja-se estabelecer uma forma para o per l aerodinâmico a partir da determinação de um ângulo entre duas seções da asa. Este ângulo é atingido pelo efeito de memória de forma da liga através da passagem de uma corrente elétrica. A função da corrente elétrica é alterar a temperatura dos atuadores através do efeito Joule, modificando a forma da liga. Devido à presença de efeitos não-lineares, principalmente no modelo matemático da liga, propõe-se a aplicação de controladores não-lineares do tipo liga-desliga. / Doutor
114

SMArt MORPHING WING: um protótipo de asa adaptativa acionada por micromolas de liga com memória de forma.

EMILIAVACA, Angelo. 27 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-27T13:03:39Z No. of bitstreams: 1 ANGELO EMILIAVACA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5881090 bytes, checksum: 6d09fd532b88ebec2b8684dfb0e6455f (MD5) / Made available in DSpace on 2018-04-27T13:03:39Z (GMT). No. of bitstreams: 1 ANGELO EMILIAVACA - DISSERTAÇÃO (PPGEM) 2016.pdf: 5881090 bytes, checksum: 6d09fd532b88ebec2b8684dfb0e6455f (MD5) Previous issue date: 2016-02-04 / CNPq / O desenvolvimento da indústria aeronáutica tem provocado alterações significativas nos conceitos atualmente aplicados em aeronaves, sejam elas para fins civis ou militares. Estas mudanças são, em parte, consequência da conscientização ambiental que tem pressionado as indústrias a produzirem aeronaves mais eficientes e menos poluidoras para continuarem competitivas. O impacto destas mudanças sobre o projeto e construção de aeronaves é a busca incessante por conceitos que aumentem a eficiência das aeronaves em um maior espectro de voo sem impactar a segurança e confiabilidade destes sistemas. Neste contexto surge o conceito de aeronaves adaptativas, capazes de se adaptar ao fluxo por mudanças aerodinâmicas sem comprometer a segurança do voo. Um dos conceitos usados em aeronaves adaptativas é o de asa adaptativa, com possibilidade de variação da curvatura do perfil aerodinâmico, o qual é adotado neste trabalho. Estas estruturas apresentam algumas limitações que ainda precisam ser desenvolvidas, como o sistema de atuação, sistema de controle e mecânica estrutural associada à mudança de forma. Baseado nestes aspectos, este trabalho descreve o desenvolvimento de um novo conceito de asa adaptativa, acionada por atuadores do tipo micromolas de liga com memória de forma (LMF). O protótipo desenvolvido, denominado de SMArt Morphing Wing, teve sua estrutura mecânica construída em polímero ABS por impressão 3D e um sistema de “pele” de recobrimento feito em chapa fina de acetato. O protótipo foi testado em vazio e sob carregamento aerodinâmico em túnel de vento, para avaliar a influência da pele e a resposta dos atuadores de LMF sob carga. Nos testes em vazio foram avaliadas as deflexões angulares máximas do protótipo com e sem pele, enquanto que nos testes sob carregamento aerodinâmico entre 6 m/s e 14 m/s, foram avaliadas as deflexões máximas e as forças de arrasto e de sustentação. Adicionalmente, usando a ferramenta computacional ANSYS® CFD, foram feitas análises teóricas do comportamento aerodinâmico do protótipo na condição mais crítica de deflexão e velocidade. A comparação entre os resultados numéricos e experimentais obtidos em túnel de vento revelaram uma boa concordância, confirmando a eficiência do protótipo desenvolvido. / The development of the aeronautic industry has caused significant changes in concepts currently applied in aircraft either for civil or military purposes. These changes are partly due to environmental awareness that has pushed the industry to produce more efficient and less polluting aircraft to remain competitive. The result of these changes on design and construction of aircraft is the incessant search for concepts that increase the efficiency of aircraft in a broader flight range without impacting on the safety and reliability of these systems. In this context arises the concept of adaptive aircraft, which are able to adapt to the flow of aerodynamic changes without compromising flight safety. One of the concepts of morphing aircraft is the morphing wing, with the possibility of variation airfoil camber, which is used in this work. These structures have some limitations that need to be developed as the actuation system, control system and structural mechanics associated with the shape change. Based on these aspects, this work describes the development of a new concept of adaptive wing, driven by shape memory alloy (SMA) micro coil springs like actuator. The prototype, called SMArt Morphing Wing, had its mechanical structure built in ABS polymer for 3D printing and a system of "skin" made of thin sheet of acetate. The prototype was tested unloaded and under aerodynamic loading on the wind tunnel, to evaluate the influence of the skin and the response of SMA actuators under load. In the no load tests were evaluated the maximum angular deflection of the prototype with and without skin, whereas in tests under aerodynamic loading between 6m/s and 14m/s, the maximum deflection, drag and lift forces were evaluated. Additionally, using the computational tool ANSYS® CFD, theoretical analyses of the aerodynamic behavior of the prototype in the most critical condition deflection and speed they were made. The comparison between the numerical and experimental results obtained in wind tunnel showed good agreement, confirming the efficiency of the developed prototype.
115

Comportamento termomecânico e fadiga de limas endodônticas de liga com memória de forma Ni-Ti: um estudo em flexão alternada usando analisador dinâmico mecânico (DMA)

BRITO, Yuri Johann Vilar de. 30 April 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-04-30T18:33:58Z No. of bitstreams: 1 YURI JOHANN VILAR DE BRITO – DISSERTAÇÃO (PPGEM) 2017.pdf: 3327072 bytes, checksum: 64ff7fa9047331a680ddf175d1592b12 (MD5) / Made available in DSpace on 2018-04-30T18:33:58Z (GMT). No. of bitstreams: 1 YURI JOHANN VILAR DE BRITO – DISSERTAÇÃO (PPGEM) 2017.pdf: 3327072 bytes, checksum: 64ff7fa9047331a680ddf175d1592b12 (MD5) Previous issue date: 2017-05-02 / Capes / A terapia endodôntica executada em canais radiculares curvos com limas de aço inoxidável pode provocar inúmeros acidentes iatrogênicos, resultando em problemas como perfurações do canal. Na tentativa de superar as limitações desses instrumentos menos flexíveis foi desenvolvida a utilização da liga com memória de forma (LMF) de NiTi (Níquel-Titânio) para fabricação de instrumentos endodônticos. A utilização desses instrumentos endodônticos de NiTi modificou os métodos de instrumentação do sistema de canais radiculares, tornando-os mais seguros e rápidos. No entanto, ainda existem poucas informações sobre o comportamento termomecânico destes instrumentos mais avançados. Nesse contexto, no presente trabalho foram realizadas as caracterizações térmica e mecânica de três limas endodônticas de LMF NiTi: Protaper Next X2, Reciproc R25 e WaveOne Primmary. Na caracterização térmica foram realizados ensaios de calorimetria diferencial de varredura (DSC) e resistência elétrica em função da temperatura (RET) para a determinação das temperaturas de transformação de fase das limas, enquanto a caracterização mecânica consistiu de ensaios de flexão simples alternada em regime estático e dinâmico (frequência de 5 Hz) a diferentes temperaturas e deflexões máximas, usando um Analisador Dinâmico Mecânico (DMA) e finalizou com uma análise pós fagida com ensaios de calorimetria diferencial de varredura (DSC) e análise das superfícies fraturadas com um Microscópio Eletrônico de Varredura (MEV) Os resultados obtidos com as três limas revelaram que estes instrumentos endodônticos se encontram na fase conhecida como Fase R, os ensaios quase estáticos revelaram uma forte dependência da Força requerida e a Temperatura, os ensaios cíclicos em flexão alternada para impor deflexões na faixa de ±0,5 mm a ±2,0 mm as limas Reciproc R25 mostraram maior tempo de vida cíclica do que as demais, e com o aumento da temperatura de teste de 35 oC para 45 oC, verificou-se que a força para impor as deflexões foram maior e a vida em fadiga das limas reduziu consideravelmente. / Endodontic therapy performed on curved root canals with stainless steel files can cause many iatrogenic accidents, resulting in problems such punctures the canal. In an attempt to overcome the limitations of the less flexible instruments, the alloy with shape memory and NiTi (Nickel-Titanium) for manufacturing endodontic instruments were developed. The use of the NiTi instruments modified methods of instrumentation of the root canal system, making them safer and faster. However, there is still little information on the thermomechanical behavior of more advanced instruments. In this context, the present work is done the thermal and mechanical characterization of three endodontic commercial LMF NiTi files: Protaper Next X2, Reciproc R25 and WaveOne Primmary were performed. For thermal characterization were performed differential scanning calorimetry (DSC) tests and electric resistance as a function of temperature (RET) for determining phase transformation temperatures of files, while the mechanical characterization consisted of static bending tests and dynamic regime (5 Hz frequency) at different temperatures and maximum deflections using a Dynamic Mechanical Analyzer (DMA) and finalizes with post fracture analysis with differential scanning calorimetry (DSC) and fractured surface analysis with an Electron Microscope. The results obtained with the three files showed that endodontic files are in phase known as Phase R, the quasi static tests revealed a strong dependence of the Required Force and the Temperature, the cyclic tests in alternating bending to impose deflections in the Range from ± 0.5 mm to ± 2.0 mm, the Reciproc R25 showed longer cycle life than the others, and with the test temperature rise from 35 °C to 45 °C, it was found that the force to impose the deflections were higher and the fatigue life of the limes reduced considerably.
116

The development of an active surface using shape memory alloys

Saal, Sheldon C January 2006 (has links)
This thesis work was conducted in the Department of Mechanical Engineering at the Cape Peninsula University of Technology (CPUT) and was submitted towards the partial fulfilment of the Masters Degree in Technology: Mechanical Engineering. / Recent years have witnessed a tremendous growth and significant advances in “smart” composites and “smart” composite structures. These smart composites integrate active elements such as sensors and actuators into a host structure to create improved or new functionalities through a clever choice of the active elements and/or a proper design of the structure. Such composites are able to sense a change in the environment and make a useful response by using an external feedback control system. Depending on their applications, smart composites usually make use of either the joint properties of the structure or the properties of the individual elements within the composites. The accumulation in the understanding of materials science and the rapid developments in computational capabilities have provided an even wider framework for the implementation of multi-functionality in composites and make “smart” composites “intelligent”.
117

TEM in-situ Untersuchungen an Ti-Ni basierten Formgedächtnislegierungen / TEM in-situ studies of Ti-Ni based shape memory alloys

Wuttke, Timo 05 April 2018 (has links)
No description available.
118

Performance of Superelastic Shape Memory Alloy Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading

Abdulridha, Alaa January 2013 (has links)
The ability to adjust structural response to external loading and ensure structural safety and serviceability is a characteristic of Smart Systems. The key to achieving this is through the development and implementation of smart materials. An example of a smart material is a Shape Memory Alloy (SMA). Reinforced concrete structures are designed to sustain severe damage and permanent displacement during strong earthquakes, while maintaining their integrity, and safeguarding against loss of life. The design philosophy of dissipating the energy of major earthquakes leads to significant strains in the steel reinforcement and, consequently, damage in the plastic hinge zones. Most of the steel strain is permanent, thus leading to large residual deformations that can render the structure unserviceable after the earthquake. Alternative reinforcing materials such as superelastic SMAs offer strain recovery upon unloading, which may result in improved post-earthquake recovery. Shape Memory Alloys have the ability to dissipate energy through repeated cycling without significant degradation or permanent deformation. Superelastic SMAs possess stable hysteretic behavior over a certain range of temperature, where its shape is recoverable upon removal of load. Alternatively, Martensite SMAs also possess the ability to recover its shape through heating. Both types of SMA demonstrate promise in civil infrastructure applications, specifically in seismic-resistant design and retrofit of structures. The primary objective of this research is to investigate experimentally the performance of concrete beams and shear walls reinforced with superelastic SMAs in plastic hinge regions. Furthermore, this research program involves complementary numerical studies and the development of a proposed hysteretic constitutive model for superelastic SMAs applicable for nonlinear finite element analysis. The model considers the unique characteristics of the cyclic response of superelastic materials.
119

Influence of High Strain Rate Compression on Microstructure and Phase Transformation of NiTi Shape Memory Alloys

Qiu, Ying 05 1900 (has links)
Since NiTi shape memory alloy (SMA) was discovered in the early 1960s, great progress has been made in understanding the properties and mechanisms of NiTi SMA and in developing associated products. For several decades, most of the scientific research and industrial interests on NiTi SMA has focused on its superelastic applications in the biomedical field and shape memory based “smart” devices, which involves the low strain rate (around 0.001 s^-1) response of NiTi SMA. Due to either stress-induced martensite phase transformation or stress induced martensite variant reorientation under the applied load, NiTi SMA has exhibited a high damping capacity in both austenitic and martensitic phase. Recently, there has been an increasing interest in exploitation of the high damping capacity of NiTi SMA to develop high strain rate related applications such as seismic damping elements and energy absorbing devices. However, a systematic study on the influence of strain, strain rate and temperature on the mechanical properties, phase transformation, microstructure and crystal structure is still limited, which leads to the difficulties in the design of products being subjected to high strain rate loading conditions. The four main objectives of the current research are: (1) achieve the single loading and the control of strain, constant strain rate and temperature in high strain rate compression tests of NiTi SMA specimens using Kolsky (split Hopkinson) compression bar; (2) explore the high strain rate compressive responses of NiTi SMA specimens as a function of strain (1.4%, 1.8%, 3.0%, 4.8%, and 9.6%), strain rate (400, 800 and 1200 s^-1), and temperature (room temperature (294 K) and 373 K); (3) characterize and compare the microstructure, phase transformation and crystal structure of NiTi SMAs before and after high strain rate compression; and (4) correlate high strain rate deformation with the changes of microstructure, phase transformation characteristics and crystal structure. Based on the results from this study, it was found that: (1) the compressive stress strain curves of martensitic NiTi SMAs under quasi-static loading conditions are different from those under high strain rate loading conditions, where higher strain hardening was observed; (2) the critical stress and stress plateau of martensitic NiTi SMAs are sensitive to the strain rate and temperature, especially at 373K, which results from the interplay between strain hardening and thermal softening; (3) the microstructure of martensitic NiTi SMA has changed with increasing strain rate at room temperature (294 K), resulting in the reduction in the area of ordered martensite region, while that area increases after deformation at elevated temperature (373K); (4) the phase transformation characteristic temperatures are more sensitive to deformation strain than strain rate; (5) the preferred crystal plane of martensitic NiTi SMA has changed from (11 ̅1)M before compression to (111)M after compression at room temperature (294 K), while the preferred plane remains exactly the same for martensitic NiTi SMA before and after compression at 373 K. Lastly, dynamic recovery and recrystallization are also observed after deformation of martensitic NiTi SMA at 373K.
120

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Yu, Hao 12 1900 (has links)
Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during high strain rate deformation is still unclear. Many of the existing high strain rate models assume that the latent heat generated during deformation contributes to the change in the stress-strain behavior during dynamic loading, which is insufficient to explain the large stress observed during phase transformation under high strain rate deformation. Meanwhile, the relationship between the phase front velocity and strain rate has been studied. In this dissertation, a new resistance to phase transformation during high strain rate deformation is discussed and the relationship between the driving force for phase transformation and phase front velocity is established. With consideration of the newly defined resistance to phase transformation, a new model for phase transformation of SMAs during high strain rate deformation is presented and validated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this dissertation presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.

Page generated in 0.0452 seconds