Spelling suggestions: "subject:"mesoscopic physics"" "subject:"mesoscopics physics""
21 |
Resonant switching and vortex dynamics in spin-flop bi-layersCherepov, Sergiy January 2010 (has links)
This thesis is a study of the static and dynamic behavior of the magne-tization in spin-flop bi-layers, which consist of two soft ferromagnetic layerscoupled by dipolar forces through a thin nonmagnetic spacer. The focus ofthe work is three fold: collective spin dynamics in the anti-parallel groundstate; resonant switching in the presence of thermal agitation; and static anddynamic behavior of the system in the vortex-pair state, with a particularemphasis on the interlayer core-core interaction. Two collective spin-flop resonance modes are observed and interpreted asacoustical and optical spin precessions, in which the moments of the two lay-ers oscillate in phase and out of phase, respectively. An analytical macrospinmodel is developed to analyze the experimental results and is found to ac-curately predict the resonance frequencies and their field dependence in thelow-field anti-parallel state and the high-field near saturated state. A micro-magnetic model is developed and successfully explains the static and dynamicbehavior of the system in the entire field range, including the C- and S-typespin-perturbed scissor state of the bi-layer at intermediate fields. The optical spin-flop resonance at 3-4 GHz is used to demonstrate resonantswitching in the system, in the range of the applied field where quasi-staticswitching is forbidden. An off-axis field of relatively small amplitude canexcite large-angle scissor-like oscillations at the optical resonance frequency,which can result in a full 180-degree reversal, with the two moments switchingpast each other into the mirror anti-parallel state. It is found that the switch-ing probability increases with increasing the duration of the microwave fieldpulse, which shows that the resonant switching process is affected by thermalagitation. Micromagnetic modeling incorporating the effect of temperature isperformed and is in good agreement with the experimental results. Vortex pair states in spin-flop bi-layers are produced using high amplitudefield pulses near the optical spin resonance in the system. The stable vortex-pair states, 16 in total, of which 4 sub-classes are non-degenerate in energy, areidentified and investigated using static and dynamic applied fields. For AP-chirality vortex-pair states, the system can be studied while the two vortexcores are coupled and decoupled in a single field sweep. It is found thatthe dynamics of the AP-chirality vortex pairs is critically determined by thepolarizations of the two vortex cores and the resulting attractive or repulsivecore-core interaction. The measured spin resonance modes in the system areinterpreted as gyrational, rotational, and vibrational resonances with the helpof the analytical and micromagnetic models developed herein. A significant effort during this project was made to build two instrumentsfor surface and transport characterization of magnetic nanostructures: a high-current Scanning Tunneling Microscope for studying transport in magneticpoint contacts, and a Current In Plane Tunneling instrument for characteriz-ing unpatterned magnetic tunnel junctions. The design and implementationof the instruments as well as the test data are presented. / QC 20101209
|
22 |
Dynamic of excitations of the Fractional quantum Hall effect : fractional charge and fractional Josephson frequency / Dynamique des excitations de l'effet Hall fractionnaire : charge et fréquence Josephson fractionnairesKapfer, Maëlle 26 October 2018 (has links)
Dans certains états quantique de la matière, le courant peut être transporté par des porteurs de charges ayant une fraction e* de la charge élementaire. C'est notamment le cas de l'Effet Hall quantique fractionnaire (EHQF) qui se produit pour des systèmes électroniques bidimensionels à basse température et soumis à un fort champ magnetique perpendiculaire. Quand le nombre de quantum de flux en unité h/e est une fraction du nombre d'électrons, le courant se propage le long des bords de l'échantillon sans dissipation. Les porteurs de charges impliqués dans le transport portent une charge fractionnaire. La mise en évidence de ces charges peut être faite via les faibles fluctuations de courant dûes à la granularité de la charge. Nous présentons ici une méthode fiable de mesure de la charge fractionnaire basée sur des correlations croisées de fluctuations de courant. La dynamique de ces charges fractionnaires lorsque l'échantillon est irradié avec des photons GHz est étudiée, permettant la mesure de la fréquence Josephson des charges fractionnaires. Ces mesures valident les processus photo-assisté en régime d'EHQF et permettent une manipulation résolue en temps des charges fractionnaires, dans le but de réaliser une source d'anyon sur le principe du léviton afin de réaliser des tests de la statistique anyonique de ces charges fractionnaires. / In some quantum matter states, the current may remarkably be transported by carriers that bear a fraction e* of the elementary electron charge. This is the case for the Fractional quantum Hall effect (FQHE) that happens in two-dimensional systems at low temperature under a high perpendicular magnetic field. When the number of magnetic flux in units of h/e is a fraction of the number of electron, a dissipationless current flows along the edges of the sample and is carried by anyons with fractional charge. The observation of the fractional charge is realized through small current fluctuations produced by the granularity of the charge. Here is presented a reliable method to measure the fractional charge by the mean of cross-correlation of current fluctuations. Moreover, the dynamical properties of those charges is probed when the sample is irradiated with photos at GHz frequency. The long predicted Josephson frequency of the fractional charge is measured. Those measurements validate Photoassisted processes in the FQHE and enable timedomain manipulation of fractional charges in order to realize a single anyon source based on levitons to perform tests of the anyonic statistics of fractional charge.
|
23 |
Quantum Transport Study in 3D Topological Insulators NanostructuresVeyrat, Louis 20 September 2016 (has links) (PDF)
In this thesis, we investigate the quantum transport properties of disordered three dimensional topological insulator (3DTI) nanostructures of BiSe and BiTe in detail. Despite their intrinsic bulk conductivity, we show the possibility to study the specific transport properties of the topological surface states (TSS), either with or without quantum confinement. Importantly, we demonstrate that unusual transport properties not only come from the Dirac nature of the quasi-particles, but also from their spin texture.
Without quantum confinement (wide ribbons), the transport properties of diffusive 2D spin-helical Dirac fermions are investigated. Using high magnetic fields allows us to measure and separate all contributions to charge transport. Band bending is investigated in BiSe nanostructures, revealing an inversion from upward to downward bending when decreasing the bulk doping. This result points out the need to control simultaneously both the bulk and surface residual doping in order to produce bulk-depleted nanostructures and to study TSS only. Moreover, Shubnikov-de-Haas oscillations and transconductance measurements are used to measure the ratio of the transport length to the electronic mean free path ltr/le. This ratio is measured to be close to one for bulk states, whereas it is close to 8 for TSS, which is a hallmark of the anisotropic scattering of spin-helical Dirac fermions.
With transverse quantum confinement (narrow wires or ribbons), the ballistic transport of quasi-1D surface modes is evidenced by mesoscopic transport measurements, and specific properties due to their topological nature are revealed at very low temperatures. The metallic surface states are directly evidenced by the measure of periodic Aharonov-Bohm oscillations (ABO) in 3DTI nanowires. Their exponential temperature dependence gives an unusual power-law temperature dependence of the phase coherence length, which is interpreted in terms of quasi-ballistic transport and decoherence in the weak-coupling regime. This remarkable finding is a consequence of the enhanced transport length, which is comparable to the perimeter. Besides, the ballistic transport of quasi-1D surface modes is further evidenced by the observation of non-universal conductance fluctuations in a BiSe nanowire, despite the long-length limit (L > ltr) and a high metallicity (many modes). We show that such an unusual property for a mesoscopic conductor is related to the limited mixing of the transverse modes by disorder, as confirmed by numerical calculations. Importantly, a model based on the modes' transmissions allows us to describe our experimental results, including the full temperature dependence of the ABO amplitude.
|
24 |
Systèmes nanoélectroniques hybrides : cartographies de la densité d'états locale / Hybrids nanoelectronics systems : mappings of the local density of states.Martin, Sylvain 13 December 2012 (has links)
La physique mésoscopique est actuellement dominée par des mesures de transport permettant d'extraire les propriétés électroniques globales des systèmes étudiés. La spectroscopie tunnel permet d'avoir un accès direct à la densité d'états locale (LDOS). Nous pouvons donc sonder les évolutions spatiale des propriétés électroniques notamment à l'interface entre 2 matériaux possédant des propriétés différentes. Au cours de cette thèse, nous avons développé un microscope à sonde locale qui combine microscopie à force atomique (AFM) et microscopie à effet tunnel (STM) et qui fonctionne à 100mK. L'AFM permet de localiser un nanocircuit unique sur un substrat isolant grâce à un Length Extension Resonator (LER). Nous pouvons ensuite mesurer la spectroscopie tunnel locale du nanocircuit conducteur. La résolution énergétique obtenue avec ce système est de 70µeV. Nous avons montré la faisabilité expérimentale d'une telle étude en mesurant l'effet de proximité sur un îlot de cuivre (métal normal) connecté par deux électrodes supraconductrices en aluminium à l'équilibre, hors-équilibre et sous champ magnétique. Nous avons également mesuré la LDOS du graphène sur Ir(111) qui présente des propriétés proches du graphène intrinsèque avec un dopage de type p de l'ordre de 0.34eV. Nous avons observé que ce dopage fluctue spatialement avec la présence de poches de charges avec une taille typique de l'ordre de 9nm. Ces observations sont similaires à des résultats déjà reportés sur des systèmes graphène sur SiO2. Cependant, le profil des poches que nous avons mesuré montre une forte corrélation avec la topographie due à une modulation du potentiel électrostatique induit par le métal sous le graphène. Une analyse plus fine a permis également de réveler la présence d'interférences de quasiparticules se traduisant par une inhomogénéité de la DOS. La taille typique des structures est de l'ordre de la longueur d'onde de Fermi avec une dépendance linéaire avec l'énergie selon E=ħvFk avec vF = 8.3±0.7x10^5m/s proche de la vitesse de Fermi théorique de 1x10^6m/s. Cela met évidence la présence de diffusion intravallée et prouve le caractère de fermions de Dirac sans masse des particules du graphène sur Ir(111). / Mesoscopic physic is currently dominated by transport measurements that extract overall electronic properties of the studied sytstems. Tunneling spectroscopy gives access to the local density of states (LDOS). Hence, we can probe the spatial evolution of the electronic properties especially at the interface between two materials with different properties. During this thesis, we built-up a scanning probe microscope at 100mK that combine both atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM helps to locate a single nanocircuit on insulating substrate thanks to a Length Extension Resonator (LER). We can then measure the tunneling spectroscopy on the conductive nanocircuit. The energy resolution of the system is of 70µeV. We show the experimental proof of such a system by measuring the proximity effect in copper island (normal island) connected by two superconducting leads in aluminum at equilibrium, out of equilibrium and with a magnetic field. We also measured the LDOS of graphene on Ir(111) that displays electronic properties close to the one of intrinsic graphene with p-doping of about 0.34eV. We observe spatial inhomogeneities of this doping forming charge puddles with a typical size af about 9nm. Those observations are close to previous results reported on graphene on SiO2. However, the profile of the measured puddles shows a strong correlation with the topography due to the modulation of the electrostatic potential induced by the metal below the graphene. A closer look to the DOS shows quasiparticles interferences forming DOS inhomogeneities. The typical size of the DOS structures is of the order of the Fermi wavelength with a linear dependence with energy as E=ħvFk with vF = 8.3±0.7x10^5m/s which is close to the theoretical Fermi velocity of 1x10^6m/s. This point out the presence intravalley scattering and demonstrate the fact that particles in graphene on Ir(111) are Dirac fermions without mass.
|
25 |
Transport mésoscopique dans les nanostructures hybrides supraconducteur-graphène / Mesoscopic transport in superconductor-graphene hybrid nanostructuresAlbert, Guillaume 10 October 2011 (has links)
Cette thèse présente une étude des propriétés de transport à basse température d'échantillons de graphène exfolié. Une première série de mesures menée à une température de 4 Kelvins sur des échantillons contactés par des électrodes constituées d'une bicouche titane/or révèle les phénomènes d'effet Hall quantique et de fluctuations universelles de conductance. L'effet Hall présente une quantification demi-entière propre au graphène. Le caractère universel des fluctuations de conductance est confirmé par les mesures, et une réduction de la longueur de cohérence de phase est observée au point de Dirac. Une autre série d'échantillons, connectés par des électrodes en titane/aluminium, permet l'étude de l'effet de proximité supraconducteur dans le graphène. Ces mesures sont réalisées à des températures comprises entre 100mK et 1K. Dans un premier échantillon, elles font apparaitre le phénomène de réflexions d'Andreev multiples et un précurseur de l'effet Josephson, ainsi qu'une amplification des fluctuations universelles de conductance lorsque les électrodes sont dans l'état supraconducteur. Dans un second échantillon, la présence de localisation forte tend à diminuer l'amplitude des fluctuations universelles de conductance, entrant ainsi en compétition avec l'effet de proximité. / This thesis presents a study of electronic transport in exfoliated graphene at low temperature. A first set of experiment at 4K on samples connected by titanium/gold electrodes exhibits Quantum Hall effect and universal conductance fluctuations. Quantum Hall effect shows a half-integer quantization specific of graphene. The universality of conductance fluctuations is checked experimentally and a decrease of electronic coherence length is observed near the Dirac point. A second series of samples connected by titanium/aluminium electrodes allows the study of superconducting proximity effect in graphene, at temperatures between 1K and 100mK. In a first sample, measurements exhibit multiple Andreev reflexions and indicate nearly established Josephson effect. An amplification of universal conductance fluctuations when electrodes are in the superconducting state is also observed. In a second sample, we observe strong localization, which tends to suppress conductance fluctuation, therefore entering in competition with proximity effect.
|
26 |
Transport quantique dans les verres de spin / Quantum transport in spin glassesCapron, Thibaut 30 March 2011 (has links)
Le verre de spin est une phase de la matière dans laquelle le désordre magnétique est gelé. Étant considéré comme un système modèle des verres en général, il a fait l'objet de nombreux travaux théoriques et expérimentaux. Les recherches ont convergé vers deux principales descriptions de l'état fondamental du système diamétralement opposées. D'une part, la solution « champ-moyen » nécessite une brisure de symétrie non triviale, et l'état fondamental est composé de multiples états organisés en une structure hiérarchique. D'autre part, une approche de « gouttelettes », fondée sur la dynamique hors-équilibre d'un état fondamental unique. La validation expérimentale d'une de ces deux théories nécessite une observation détaillée de l'échantillon au niveau microscopique. La physique mésoscopique, basée sur les effets d'interférences électroniques, propose un outil unique pour accéder à cette configuration microscopique des impuretés: les fluctuations universelles de conductance. En effet, ces fluctuations représentent une empreinte unique du désordre dans l'échantillon. Ce travail présente la mise en œuvre de mesures de fluctuations de conductance universelles dans les verres de spin. Les effets d'interférences électroniques étant sensibles aux processus de décohérence du verre de spin, ils donnent accès expérimentalement à de nouvelles quantités concernant les excitations du système. La mesure des corrélations entre les empreintes du désordre permet quant à elle d'explorer sous un angle nouveau l'ordre non conventionnel de cet état vitreux. / The spin glass is a state of matter in which the magnetic disorder is quenched. Being considered as a model system for glasses in general, it has been extensively studied, both theoretically and experimentally. The research have converged towards two main descriptions of the fundamental state of the system that are clearly antagonist. On the one hand, the “mean-field” solution has a non trivial broken symmetry, and the ground state is composed of multiple valleys in a hierarchical structure. On the other hand, a magnetic “droplet” model, based on the off-equilibrium dynamics of a unique ground state. The experimental validation of one of these two theories requires a detailed observation of the sample at the microscopic level. Mesoscopic physics, which deals with interference effects of the electrons, proposes a unique tool to access to this microscopic configuration of the impurities: the universal conductance fluctuations. Indeed, these fluctuations represent a unique fingerprint of the sample disorder. This work presents the implementation of universal conductance fluctuations measurements in spin glasses. The electron interference effects being sensitive to the decoherence processes of the spin glass, they give access experimentally to new quantities related to the excitations of the system. The measurement of correlations between the disorder fingerprints allow to explore under a new perspective the non conventional order of this glassy state.
|
27 |
High frequency quantum noise of mesoscopic systems and current-phase relation of hybrid junctions / Bruit quantique haute fréquence de systèmes mésocopiques et relation courant-phase de jonctions hybridesBasset, Julien 14 October 2011 (has links)
Cette thèse est consacrée à l’étude de deux aspects de la physique mésoscopique que sont le bruit quantique haute fréquence et l'effet de proximité supraconducteur en se focalisant toutefois sur un système modèle: le nanotube de carbone.Ainsi la première partie de cette thèse est dédiée à la mesure de bruit quantique haute fréquence. Afin de mesurer ces fluctuations nous avons développé un système de détection "on-chip" original dans lequel la source de bruit et le détecteur, une jonction Supraconducteur/Isolant/Supraconducteur, sont couplés par un circuit résonant. Cela nous a permis dans un premier temps de mesurer le bruit à l'équilibre du résonateur. Son bruit comporte une forte asymétrie entre émission et absorption reliée aux fluctuations de point zéro. Une seconde étape a été de mesurer le bruit hors équilibre d’émission du passage tunnel de quasi-particules dans une jonction Josephson. Ce bruit comporte une forte dépendance en fréquence en accord avec les prédictions théoriques et nous a permis de valider le principe de détection. Finalement, nous avons pu mesurer le bruit associé au régime Kondo hors équilibre d'une boîte quantique à nanotube de carbone (énergie caractéristique kBTK avec TK la température Kondo). Ce bruit d’émission à kBTK~hν possède une forte singularité à la tension V=hν/e (ν étant la fréquence de mesure). Cette singularité est reliée aux résonances Kondo dans la densité d’états de la boîte associés aux niveaux de Fermi de chaque réservoir. A plus haute fréquence hν~3kBTK, la singularité disparaît, ce qui est compris par des effets de décohérence induits par la tension.Dans la seconde partie, nous avons développé une technique permettant de mesurer à la fois la relation courant/phase et la caractéristique courant/tension d'un lien faible séparant deux supraconducteurs. Nous avons ainsi caractérisé une jonction à base de nanotube de carbone au travers de laquelle une relation courant-phase modulable par une tension de grille a été observée. Cette relation courant/phase exhibe une forte anharmonicité lorsque le supercourant présente une relativement grande amplitude. / This thesis discusses two experiments of mesoscopic physics regarding the high frequency quantum noise and the superconducting proximity effect. We nevertheless focused on a single model system: the carbon nanotube. The first experiment aims to measure the high frequency quantum noise of the tube. In order to measure those fluctuations we have designed an original on-chip detection scheme in which the noise source and the detector, a Superconductor/Insulator/Superconductor junction, were coupled through a resonant circuit. This first allowed us to measure the equilibrium noise of the resonator. It exhibits a strong asymmetry between emission and absorption related to zero point fluctuations. We have then measured the out-of-equilibrium emission noise of quasiparticles tunneling of a Josephson junction. It exhibits a strong frequency dependence in agreement with theoretical predictions and allowed us to validate the detection scheme. Finally, the out-of-equilibrium emission noise associated to the Kondo effect (characteristic energy kBTK with TK the Kondo temperature) in a carbon nanotube quantum dot was measured. We find a strong singularity at voltage V=hν/e (ν is the measurement frequency) for frequency ν~kBTK/h. This singularity is related to resonances in the density of states of the dot pinned at the Fermi energy of the leads. At higher frequency hν~3kBTK the singularity vanishes and understood in terms of decoherence effects induced by the bias voltage. In the second experiment, we have developed a technique allowing to measure in the same experiment the current-phase relation and the current-voltage characteristic of a weak link separating two superconductors. We have characterized a carbon nanotube based junction through which a gate tunable current-phase relation was observed. Jointly to a high critical current amplitude, an anharmonic current-phase relation was measured.
|
28 |
Transport quantique dans les verres de spins / Quantum transport in spin glassesForestier, Guillaume 30 March 2015 (has links)
Les travaux expérimentaux présentés dans cette thèse associent deux pans de la physique de la matière condensée, avec d'un côté la physique des verres de spins et de l'autre la physique mésoscopique. Le verre de spins est un exemple emblématique de système désordonné et frustré, il se caractérise à basse température par un ordre magnétique non conventionnel, où le désordre magnétique apparaît gelé. De plus, celui-ci est considéré comme un système modèle pour étudier les verres en général et de ce fait, il a fait l'objet de nombreuses études expérimentales et théoriques. Après d'importants efforts de recherche, la description de l'état fondamental de ce système a abouti à deux approches très différentes. La première, donnée par la résolution non triviale du problème en champ moyen, met en avant un état fondamental composé d'une multitude d'états organisés et hiérarchisés. La deuxième approche, dite des "gouttelettes", se base quant à elle sur la dynamique hors équilibre d'un unique état. Cependant, en dépit de ces contributions, la compréhension de cette phase est loin d'être complète et la nature de l'état fondamental reste encore un débat ouvert. Dans un conducteur mésoscopique, le transport se fait de manière cohérente : les électrons gardent la mémoire de leur phase, ce qui permet d'observer des effets d'interférences électroniques. La motivation à la base de ce travail est d'utiliser ces effets d'interférences comme outil pour étudier le verre de spins. En effet, étant donné que les interférences électroniques dépendent intiment de la disposition du désordre statique du conducteur, le transport cohérent peut se révéler être une sonde microscopique très efficace pour étudier la configuration du désordre dans un conducteur. Bien que quelques expériences pionnières de transport cohérent existent dans des verres de spins, ce domaine de recherche n'a que très peu été exploré. Néanmoins, il a connu un récent renouveau grâce à des travaux théoriques qui montrent de quelle manière cette sonde est sensible au désordre magnétique gelé et comment elle peut fournir des informations sur la nature de l'état fondamental du verre de spins. Ainsi, ce travail de thèse expérimental présente l'implémentation de mesure de transport dans des verres de spins mésoscopiques. La première partie de l'étude est consacrée aux caractéristiques générales de transport classique et quantique de ces systèmes. Nous avons examiné les propriétés de la résistivité en fonction de la température et du champ magnétique et nous montrons que ces systèmes mésoscopiques possèdent bien des comportements attendus pour des verres de spins. Dans une deuxième partie, nous nous sommes intéressés au comportement de la magnétorésistance à bas. Nous avons mis en avant que celle-ci présente une forte hystérésis dont l'amplitude dépend fortement, de la température dans la phase vitreuse et de la vitesse de balayage du champ magnétique. Nous avons argumenté que ce comportement particulier traduit la mise hors équilibre du système et montrons comment la température et la vitesse de balayage du champ magnétique pilotent l'écart à l'équilibre. Dans cette partie, nous avons aussi examiné par des mesures de transport la relaxation du système vers l'équilibre, après l'avoir excité. Nous présentons également les propriétés de transport étonnantes que nous avons observées à bas champ, résultant de protocoles en températures et en champs magnétiques plus complexes. / The experiments presented in this thesis associate two fields of condensed matter physic, on the one hand with the spin glass physic and the other hand with the mesoscopic physic. The spin glass state is one of the most emblematic of disordered and frustred system and at low temperature, it is caracterized by an unconventionel order where the magnetic disorder is quenched. Moroever, it is considered as a model system for glasses in general and thereby it has been extensively studied, both experimentally and theoreticlly. After extensive research efforts, the description of fundamental state of the system has lead towards two well different approaches. The first, given by the mean field solution, highlights a fundamental composed of mulitple states organised and hierarchical. The second, called droplet model is based on the off--equilibrium dynamic of a unique ground state. However, despite these contributions, the understanding ot this phase is far from being complete and the nature of the ground state still remains an open question. In a mesoscopic conductor, the transport of electron is coherent: electrons keep the memory of their phase, so that one can observe interference effects. The main motivation of this work is to use these interference effects in order to to probe the spin glass state. Indeed, as electronic interference depends of the position of the static disorder, coherent transport can be a useful tool to study the configuration of the microscopic disorder. Althought few coherent transport experiments exist to probe the spin glass, this field of research has very little explored. Nevertheless, this area has been a revival thanks to theoritical work, showing how coherent transport is sensitived to the quenched disorder and how it may provide informations of the nature of fundamental state of spin glass. So, this experimental work deals with the implementation of transport measurements in mesoscopic spin glasses. The first part of the study is focused on the general charateristics of classical and quatum transport of these system. We have examined the resistivity as a function of the temperature and magnetic field and we show that these mesoscopic systems have a spin glass-like behaviour. In a second part, we have focused on the low field magnetoresistivity. We show that it presents a strong hysteresis, whose the amplitude is strongly depends, both of the temperature in the glassy phase and sweeping rate of the magnetic field. We argue that this particular behaviour is related to the out off-equilibrium of the system and we show how the temperature and the sweeping rate control the deviation to the equilibrium. In this part, we also examine by transport measurements how the system relaxes towards the equilibrium just after its excitation. In addition, we present surprinsing transport propreties that we observed, resulting of experimental protocols more sophisticated in temperatures and magnetic fields.
|
29 |
Physique mésoscopique d'un gaz de Bose unidimensionnel : courants permanents et excitations dipolaires collectives / Mesoscopic physics of a one-dimensional Bose gas : persistent currents and collective dipole excitationsCominotti, Marco 09 October 2015 (has links)
Ces dernières années d'importantes avancées techniques dans la manipulation des gaz atomiques ultrafroids ont ouvert la voie à la réalisation de fluides quantiques mésoscopiques de basse dimension. L'objet de cette thèse est l'étude théorique de certains systèmes mésoscopiques réalisables avec un gaz de Bose unidimensionel. Ces systèmes présentent des phénomènes quantiques intéressants, et sont potentiellement utiles en vue d'applications technologiques. Nous étudions le phénomène des courants permanents induits dans un gaz confiné sur un anneau par la rotation d'une barrière de potentiel, nous examinons la faisabilité d'un qubit fondé sur la superposition d'états de courant dans un réseau en forme d'anneau traversé par un champ de jauge et contenant un 'weak-link', ainsi que l'excitation dipolaire du gaz dans un 'split-trap' induit par le déplacement hors équilibre du potentiel externe. Dans tous ces cas, nous combinons diverses approches analytiques et numériques, qui permettent de couvrir l'ensemble des régimes d'interactions. Nous mettons en lumière un régime jusque-là inconnu, d'écrantage maximal des barrières de potentiel par le fluide, dû à une competition entre les effets des interactions et des fluctuations quantiques. Ces résultats ont des conséquences significatives sur le comportement de tels systèmes et, de ce fait, sont importants pour les réalisations en cours et à venir de dispositifs à gaz d'atomes ultrafroids. / Thanks to the experimental breakthrough of the last years in the manipulation of ultra cold atomic gases, it has become possible to realize low-dimensional and mesoscopic quantum fluids. The object of this thesis is the theoretical investigation of a few mesoscopic systems that can be realized with a one-dimensional Bose gas. These systems exhibit interesting quantum phenomena, and are potentially relevant for technological applications. We study the phenomenon of persistent currents induced by stirring the gas confined on a ring with a potential barrier, we examine the feasibility of a qubit based on the superposition of current states in a ring lattice threaded by a gauge field in the presence of a weak-link, and we investigate the dipole excitation of the gas in a split trap induced by an out-of-equilibrium displacement of the external potential. In all these cases, we apply a combination of analytical and numerical approaches that allow to cover all the interaction regimes. As a recurring theme, we disclose a so-far unknown regime of maximal screening of the barrier potential by the fluid, arising from the interplay of effects due to interactions and quantum fluctuations. These results have significant consequences for the behaviour of such systems and are important for the ongoing and future realization of ultracold atomic gases devices.
|
30 |
Electronic properties of diffusive three-terminal Josephson junctions : a search for non-local quartets / Propriétés électroniques de jonctions Josephson diffusives à trois terminaux : à la recherche d'un mode de quartets non-localPfeffer, Andreas Helmut 18 December 2013 (has links)
Pendant ce travail de thèse, j'ai tout d'abord finalisé le développement d'un système expérimental unique dédié aux études de transport électronique de nanostructures multi-terminaux de faible impédance. Ce dispositif permet des mesures de conductance et de bruit à très basse température (30 mK), avec une résolution du pico-ampère en utilisant des SQUIDs comme amplificateurs de courant. Dans le chapitre 5, je fournis une description du fonctionnement de la mesure. De plus, je décris la calibration du dispositif et la manière de déduire des quantités physiques à partir des mesures.Au Chapitre 6, je décris des mesures de transport avec des jonctions diffusives à trois terminaux (trijonctions). Dans une géométrie, que l'on appelle T-shape, des électrodes supraconductrices d'Aluminium sont connectées entre-elles par une partie centrale métallique non-supraconductrice de Cuivre. Pour ces nanostructures, on observe des anomalies de conductance à basse tension qui n'ont jamais été observées expérimentalement. Ces anomalies de résistance/conductance ressemblant fortement à l'effet Josephson apparaissant lorsque deux des potentiels appliqués à la trijonction ont une somme nulle. Les anomalies sont présentes sur une large échelle de tension sans perte d'amplitude. De-même, elles montrent une grande robustesse en température. Des expériences sous champ magnétique appliqué montrent une forte suppression des anomalies pour un champ magnétique correspondant à flux magnétique dans la partie normale de l'ordre d'un quantum de flux. Ceci indique qu'un mécanisme cohérent de phase doit être à l'origine des anomalies. Dans la littérature, deux mécanismes sont proposés pour expliquer ces effets.Le premier, nommé "mode-locking", est un accrochage dynamique des courants Josephson ac, qui est induit par l'environnement expérimental (circuit). Cette situation a été étudiée dans les années soixante sur des microstructures Josephson couplées à base de liens faibles. Pour tester cette explication, nous avons mesuré un échantillon composé de deux jonctions Josephson spatialement séparées. Les anomalies n'apparaissent pas dans une telle géométrie, pas même avec une amplitude réduite. Ceci indique qu'une synchronisation par l'environnement expérimental ne peut pas être à l'origine des anomalies observées. Le deuxième mécanisme théorique évoqué est nommé "mode de quartet" et a été proposé récemment par Freyn et collaborateurs. L'une des électrodes supraconductrices distribue alors des doublets de paires de Cooper. Chacune de ces deux paires se scindent alors en deux quasiparticles se propageant chacune vers deux contacts supraconducteurs différents. Dans un tel mécanisme deux quasiparticules, issues de deux paires de Cooper différentes, arrivent sur chacun des deux contacts supraconducteurs. Lorsque les tensions appliquées entre le contact supraconducteurs émetteur et les deux autres contacts sont exactement opposés, les phases des fonctions d'ondes électroniques des quasiparticules arrivant sur un même contact supraconducteur sont telles que ces deux quasiparticules peuvent se recombiner pour former une paire de Cooper. Par ce mécanisme le doublet de paires de Copper émis se distribue de manière cohérente en deux paires de Cooper chacune dans un contact supraconducteur différent.Ce mécanisme est favorable, car il est robuste envers le désordre et peut ainsi exister sur une large échelle de tensions.Au cours de cette thèse, j'ai montré que ces anomalies sont effectivement présentes pour des tensions appliquées correspondant à des énergies bien supérieures à l'énergie de Thouless. A contrario, les effets cohérents responsables de l'effet Josephson ac doivent être fortement atténués sur cette même échelle d'énergie, ce qui rend peu probable le mécanisme de mode-locking. / During this PhD, I have first finished the development of a unique experimental set-up, dedicated for studies of electronic transport of low impedance multi-terminal nanostructures. This set-up allows conductance and noise measurements at very low temperature (30 mK), with a resolution of a few pico-ampere by using SQUIDs as current amplifiers. In chapter 5, I give some explanation of the measurement working principle. Furthermore, I explain the calibration of the experimental set-up as well as how to extract physical quantities from the measurements.In chapter6, I explain transport measurements on diffusive tri-terminal junctions (tri-junction). In a T-shape called geometry, the superconducting Al-electrodes are connected via a common metallic, non-superconducting part of Copper. For these nanostructures, we observe features in the conductance at low voltage, which have been never observed yet experimentally. These features in conductance/resistance have a striking resemblance with a dc-Josephson effect, appearing when two applied potentials on the tri-junction compensate exactly each other.In literature, two mechanisms are proposed to explain this effect.The first mechanism, called "mode-locking", corresponds to a dynamic locking of ac-Josephson currents, which is induced by the experimental environment (circuit). This situation has been extensively studied in the 60's on coupled microstructures, based on weak links. In order to test this explanation, we have measured a junction, which is composed of two spatially separated Josephson junctions. The anomalies does not show up in such a geometry, even not with strongly reduced amplitude. This indicates, that synchronization via the experimental environment can't be the origin of the observed features. The second theoretical mechanism is named "quartet-mode" and has been recently proposed by Freyn and Co-workers. In this process, one superconducting electrode emits doublets of Cooper-pairs. Each of the two pairs splits into two quasi particles propagating toward different superconducting contacts. In such a mechanism, two quasi-particles originating of two different Cooper-pairs, arrive each in the two superconducting contacts. If the applied voltage between the emitting superconducting contact and the two other contacts is exactly opposite, the phase of the electronic wave functions of the arriving quasi-particles on the same superconducting contact are such, that these two quasi-particles can recombine by forming a Cooper-pair. Due to this mechanism, the emitted doublet of Cooper-pairs is coherently distributed as two Cooper-pairs, each of them in a different superconducting contact. This mechanism is favored, since it is robust with respect to disorder and can hence also exist over a large range of voltage. During this PhD, I have shown that these anomalies are indeed present for applied voltage corresponding to energies well above the Thouless energy. Argumentum a contrario, the coherent effects responsible for the ac Josephson-effect have to be strongly attenuated over the same range of energy, which makes low probable the effect of mode-locking.
|
Page generated in 0.0599 seconds