Spelling suggestions: "subject:"metal 2oxides"" "subject:"metal akoxides""
111 |
THE ROLE OF METAL OXIDE BIOGEOCHEMISTRY ON SEDIMENT NICKEL BIOAVAILABILITY TO BENTHIC BIOTAMarques Mendonca, Raissa 22 November 2022 (has links)
No description available.
|
112 |
Unexpected Magnetic Properties of Preovskite-Based Transition Metal OxidesCuthbert, Heather Lynn 11 1900 (has links)
<p>Various transition metal oxides with interesting magnetic properties (often based on the perovskite structure) were prepared using conventional solid-state methodologies and fully characterized using a variety of techniques such as powder X-ray diffraction, variable temperature neutron diffraction, SEM-EDS, TEM-EDS, SQUID magnetometry
and heat capacity measurements.</p>
<p>One family of compounds that was investigated intensively were the 'pillared perovskites'. In this structure type, perovskite-like layers of comer shared octahedra are separated. by about 10 A by diamagnetic edge-shared octahedral dimer 'pillars'. Despite this long distance between layers, long-range order is present in both the La5Re3Co016
and La5Re3Ni016 members. In fact, a new magnetic structure was discovered for the Ni compound consisting of ferromagnetically ordered layers, coupled antiferromagnetically.</p>
<p>In addition, for the first time, substitution of the 5+ ion within the layer was successful, yielding compounds with general formula, La5Re3-xTaxB016 (B =Mn, Fe, Co, Ni; x ~ 0.5). Surprisingly, despite replacing about half of the magnetic ions within the perovskite layers with non-magnetic tantalum, the materials had the same ordering temperatures and magnetic structures as their unsubstituted analogues. This observation is evidence that the longer interlayer coupling pathway is the key to long-range ordering in this structure type.</p>
<p>The lanthanum rhenium oxide, La3Re20 10, involves the edge-shared octahedral dimer 'pillar' unit from the pillared perovskite structure, but with one unpaired electron per dimer unit. Prepared for the first time by solid-state synthesis, and studied magnetically in depth, long-range order was evident at 18 K. Theoretical investigations hinted that the magnetic structure consists of antiferromagnetically coupled chains of dimers, coupled antiferromagnetically.</p>
<p>The magnetic properties of the double perovskite, SrLaRuNi06, were also explored for the first time. This study demonstrates the power of neutron diffraction at elucidating magnetic information, such as the ordering temperature and magnetic structure, despite the presence of a ferromagnetic impurity that dominated much of the
measurements.</p>
<p>The candidate's examination of the magnetism of the rock-salt oxides, Na2Cu2Te06 and Na3Cu2Sb06 has raised some controversy in the literature, as the exact nature of the one-dimensional order (either antiferromagnetic-antiferromagnetic or
antiferromagnetic-ferromagnetic alternating linear chains) is uncertain. Again, theoretical calculations and comparison with other magnetic data can aide in the ultimate understanding of the overriding magnetism.</p>
<p>This thesis has focused on the synthesis and study of transition metal oxides with interesting or unusual magnetic properties. In many cases, the compounds exhibited long-range magnetic order despite convoluted or non-existent magnetic superexchange pathways.</p> / Thesis / Doctor of Philosophy (PhD)
|
113 |
Order Within Disorder: Theory and Simulation of Amorphous and Carbonaceous MaterialsThapa, Rajendra January 2022 (has links)
No description available.
|
114 |
ELECTROCHEMICAL SENSORS FOR SENSITIVE AND SPECIFIC DETECTION OF ORGANOPHOSPHATE, HEAVY METAL ION, AND NUTRIENTJangid, Krishna January 2022 (has links)
In an electrochemical sensor, the sensing performance is mainly dependent on the mass transport of the analyte towards the working electrode-electrolyte interface and working electrode properties. Carbon nanomaterials like carbon nanotubes are widely employed to modify the working electrode properties for sensitive detection. A simulation model is formulated to investigate the effects of modifying a planar bare electrode with carbon nanotubes on electrochemical detection of fenitrothion (FT, an organophosphate). The model revealed that porous electrodes caused the change in mass transport regime and influenced FT’s electrochemical response. The results aided in understanding the influence of the porous electrode on analyte detection and thus assisted in the fabrication of an ultrasensitive electrochemical sensor.
Simulation supported synthesis of a highly sensitive ink to produce highly porous and electrocatalytic electrodes. Activated carbon (AC) possesses high porosity and surface area, but they suffer from lower electrical conductivity. To enhance their conductivity, AC was co-doped with nitrogen and sulfur. Multiwalled carbon nanotubes were incorporated to further improve their porosity and electrocatalytic properties. The synthesized nitrogen-sulfur co-doped activated carbon coated multiwalled carbon nanotube (NS-AC-MWCNT) ink produced highly porous electrocatalytic electrodes. The sensor revealed a 4.9 nM limit of detection (LOD) under optimized conditions. However, it failed to overcome the enzymatic sensors’ performances. The ultrasensitive performance was achieved by incorporating a detecting agent in the ink that instilled analyte capture ability. Metal oxides like ZrO2, MnO2, and MgO possessed affinity towards organophosphate (fenitrothion), heavy-metal ion (lead), and nutrient (nitrite). Metal oxides were modified with 3,4-dihydroxylbenzaldehyde (DHBA) – Chitosan (CHIT) to produce well dispersed and uniformly coated stable electrodes. The ZrO2-DHBA-CHIT/NS-AC-MWCNT sensor achieved a remarkable limit of detection of 1.69 nM for FT. The sensor's performance exceeded the enzymatic-based sensors. The commonly found chemical interferents had negligible interference. The sensor produced reliable and satisfactory performance in lake and tap water. The MnO2-DHBA-CHIT/NS-AC-MWCNT/GCE and MgO-DHBA-CHIT/NS-AC-MWCNT/GCE sensors produced an enormous improvement in the sensor performance compared to unmodified electrodes for lead and nitrite detection. The preliminary results on detecting other pollutants like lead and nitrite showed the importance of the methodology in providing a platform for a new class of metal oxide-based sensors. / Thesis / Doctor of Philosophy (PhD) / The growing population and rapid industrial development are affecting the water quality worldwide. The major water pollutants are organophosphates, heavy metal ions, and nutrients. These water pollutants are harmful, and their bioaccumulation poses a major health concern. In the USA alone, water quality issues are predicted to cost $210 billion annually. Therefore, sensors to detect water pollutants are developed to monitor their environmental footprints. Electrochemical sensors are popularly used to detect water pollutants owing to their low-cost and high sensitivity.
The objective of this dissertation was to fabricate highly sensitive and specific electrochemical sensors to detect organophosphate (e.g., fenitrothion, FT), heavy metal ion (e.g., lead), and nutrient (e.g., nitrite). The sensors were fabricated with ink based on nanomaterials like carbon nanotubes and detecting agents like metal oxides. The fabricated sensors achieved very high sensitivity and specificity and can detect water pollutants in lake and tap water.
|
115 |
MOLECULAR STRUCTURE-REACTIVITY RELATIONSHIPS FOR PROPANE OXIDATION OVER MODEL MIXED OXIDE CATALYSTSAL-SAEEDI, JAMAL N. 07 July 2003 (has links)
No description available.
|
116 |
Forcefield-Based Simulations of Bulk Structure of Mo-V-(Te, Nb)-O M1 Phase Catalysts for Selective Propane Ammoxidation to AcrylonitrileKapustin, Yaroslav A. 20 April 2011 (has links)
No description available.
|
117 |
Aqueous syntheses of transition metal oxide nanoparticles for bioapplicationsWorden, Matthew 07 December 2015 (has links)
No description available.
|
118 |
The crystal and electronic structures of oxides containing d0 transition metals in octahedral coordinationEng, Hank W. January 2003 (has links)
No description available.
|
119 |
Cation Influence on Negative Thermal Expansion in the A<sub>2</sub>M<sub>3</sub>O<sub>12</sub> FamilyGates, Stacy D. 30 September 2008 (has links)
No description available.
|
120 |
INTERACTIONS BETWEEN METAL OXIDES AND/OR NATURAL ORGANIC MATTER AND THEIR INFLUENCE ON THE OXIDATIVE REACTIVITY OF MANGANESE DIOXIDETaujale, Saru January 2015 (has links)
Mn oxides have high redox potentials and are known to be very reactive, rendering many contaminants susceptible to degradation via oxidation. Although Mn oxides typically occur as mixtures with other metal oxides (e.g., Fe, Al, and Si oxides) and natural organic matter (NOM) in soils and aquatic environments, most studies to date have studied the reactivity of Mn oxides as a single oxide system. This study, for the first time, examined the effect of representative metal oxides (Al2O3, SiO2, TiO2, and Fe oxides) and NOM or NOM-model compounds (Aldrich humic acid (AHA), Leonardite humic acid (LHA), pyromellitic acid (PA) and alginate) on the oxidative reactivity of MnO2, as quantified by the oxidation kinetics of triclosan (a widely used phenolic antibacterial agent) as a probe compound. The study also examined the effect of soluble metal ions released from the oxide surfaces on MnO2 reactivity. In binary oxide mixtures, Al2O3 decreased the reactivity of MnO2 as a result of both heteroaggregation and complexation of soluble Al ions with MnO2. At pH 5, the surface charge of MnO2 is negative while that of Al2O3 is positive resulting in intensive heteroaggregation between the two oxides. Up to 3.15 mM of soluble Al ions were detected in the supernatant of 10 g/L of Al2O3 at pH 5.0 whereas the soluble Al concentration was 0.76 mM in the mixed Al2O3 + MnO2 system at the same pH. The lower amount of soluble Al in the latter system is the result of Al ion adsorption by MnO2. The experiments with the addition of 0.001 to 0.1 mM Al3+ to MnO2 suspension indicated the triclosan oxidation rate constant decreased from 0.24 to 0.03 h-1 due to surface complexation. Fe oxides which are also negatively charged at pH 5 inhibited the reactivity of MnO2 through heteroaggregation. The concentration of soluble Fe(III) ions ( 4 mg-TOC/L or [alginate/PA] > 10 mg/L, a lower extent of heteroaggregation was also observed due to the negatively charged surfaces for all oxides. Similar effects on aggregation and MnO2 reactivity as discussed above were observed for ternary MnO2‒Al2O3‒NOM systems. HAs, particularly at high concentrations (2.0 to 12.5 mg-C/L), alleviated the effect of soluble Al ions on MnO2 reactivity as a result of the formation of soluble Al-HA complexes. Alginate and PA, however, did not form soluble complexes with Al ions so they did not affect the effect of Al ions on MnO2 reactivity. Despite the above observations, the amount of Al ions dissolved in MnO2+Al2O3+NOM mixtures was too low, as a result of NOMs adsorption on the surface to passivate oxide dissolution, to have a major impact on MnO2 reactivity. In conclusion, this study provided, for the first time, a systematical understanding of the redox activity of MnO2 in complex model systems. With this new knowledge, the gap between single oxide systems and complex environmental systems is much narrower so that it is possible to have a more accurate prediction of the fate of contaminants in the environment. / Civil Engineering
|
Page generated in 0.0536 seconds