Spelling suggestions: "subject:"metal composite"" "subject:"fetal composite""
1 |
Processing, structure and properties of Al-matrix compositesBegg, Henry S. January 2013 (has links)
Three classes of Al-matrix composite were manufactured to combine dissimilar metals and incorporate structural hierarchy, in an attempt to develop unusual combinations of mechanical properties. The first class combined a brittle, nano-quasicrystalline forming Al-3Fe-2Cr-2Ti phase with a ductile Al-4Cu phase into a layered structure using low pressure plasma spraying (LPPS). By using a substrate with multi-scale topological features, an ultra-thick (>2mm) deposit was successfully sprayed, which was subsequently consolidated by hot rolling to reduce residual porosity. The microstructure comprised a 'brick-wall' structure consisting of a convoluted arrangement of inter-leaved discreet droplet splats. Structure-property relationships were studied for four volume fractions of ductile additions and in-situ electron microscopy of beams subjected to 3-point bending suggested the ductile additions were providing additional toughening to the composite by a crack-bridging mechanism. The second class of composite investigated highly deformed microstructures of Al with 20vol% additions of either Sn or Ti. Nano-scale fibrous structures of the minority additions were achieved via an accumulative extrusion method, where extruded rod was abraded, degreased, bundled and re-extruded. This process was repeated to create refined microstructures while retaining a large material section. Fracture properties were studied in three point bending and crack growth monitored using Digital Image Correlation (DIC) to produce strain fields of the deforming beam surface. Modest changes were observed in mechanical properties with weak interfaces between poorly bonded extruded rods dominating fracture behaviour. Whiskers formed on polished surfaces of extruded Al-20vol%Sn and were monitored in real time by electron microscopy. Growth rates of up to 2.8nm/s were measured, which exceeds re- ported values in the literature on electroplated coatings by at least one order of magnitude. This may provide a convenient new means of studying whisker formation and calls into question current growth models. The third class of composite combined heavily rolled sheets of Al-20vol%Sn and Al-20vol%Ti with glass fibre/epoxy sheets to produce a laminate with multi-scale architecture. This laminate was designed as a proof-of-concept hierarchical material with structures ranging from the near millimetre scale of the metal-polymer layers, to the micro-sized glass fibre reinforcement of the epoxy and the nano-scale filamentary/lamellar microstructure of the highly deformed metal sheets. Fracture of such laminates was investigated in 3-point bending with continuous optical monitoring.
|
2 |
Nano Structural Metal Composites: Synthesis, Structural And Thermal CharacterizationKaleli, Kadir 01 July 2008 (has links) (PDF)
In this work , metal functional polymers, namely Cr-PS-b-P2VP, Co-PS-b-P2VP, Au-PS-b-P2VP, Fe-PS-b-P2VP and Mo-PS-b-P2VP were prepared by thermal reaction of hexacarbonylchromium, Cr(CO)6, octacarbonyldicobalt,Co2(CO)8, hydrogentetrachloroaurate(III), H(AuCl4).4H2O, trichloroiron(III), FeCl3.6H2O, molybdenum(VI)oxide, MoO3 and PS-b-P2VP. TEM images indicated formation of AuIII, Cr and Co nanoparticles. On the other hand, crystalline structures were detected for Fe-PS-b-P2VP and Mo-PS-b-P2VP. Samples involving nanoparticles were further characterized by FTIR, UV-Vis and direct pyrolysis mass spectroscopy techniques. FTIR analysis indicated dissapearance of characteristic carbonyl peaks of Cr(CO)6 and Co2(CO)8 for Cr-PS-b-P2VP and Co-PS-b-P2VP samples. The appearance of a peak at about 467 cm-1 supported the formation of metal-nitrogen bond. Pyrolysis mass spectrometry analysis showed an increase in the thermal stability of P2VP chains involving coordinated pyridine units. The thermal stability of these chains increased in the order Co< / Cr < / Au3+ indicating stronger coordination in the same order.
|
3 |
Applications of Layer-by-Layer Films in Electrochromic Devices and Bending ActuatorsJain, Vaibhav 25 September 2009 (has links)
This thesis presents work done to improve the switching speed and contrast performance of electrochromic devices. Layer-by-Layer (LbL) assembly was used to deposit thin electrochromic films of materials ranging from organic, inorganic, conducting polymers, etc. The focus was on developing new materials with high contrast and long lifecycles. A detailed switching-speed study of solid-state EC devices of already-developed (PEDOT (Poly(3,4-ethylenedioxythiophene)), polyviologen, inorganic) materials and some new materials (Prodot-Sultone) was performed. Work was done to achieve the optimum thickness and number of bilayers in LbL films resulting in high-contrast and fast switching. Device sizes were varied for comparison of the performance of the lab-made prototype device with the commercially available "small pixel" size displays. Symmetrical EC devices were fabricated and tested whenever conducting polymers are used as an EC material. This symmetrical configuration utilizes conducting polymers as an electroactive layer on each of two ITO-coated substrates; potential is applied to the two layers of similar conducting polymers and the device changes color from one redox state to another. This method, along with LbL film assembly, are the main factors in the improvement of switching speed results over already-published work in the literature. PEDOT results show that EC devices fabricated by LbL assembly with a switching speed of less than 30 ms make EC flat-panel displays possible by adjusting film thickness, device size, and type of material. The high contrast value (84%) for RuP suggests that its LbL films can be used for low-power consumption displays where contrast, not fastest switching, is the prime importance.
In addition to the electrochromic work, this thesis also includes a section on the application of LbL assembly in fabricating electromechanical bending actuators. For bending actuators based on ionic polymer metal composites (IPMCs), a new class of conductive composite network (CNC) electrode was investigated, based on LbL self-assembled multilayers of conductive gold (Au) nanoparticles. The CNC of an electromechanical actuator fabricated with 100 bilayers of polyallylamine hydrochloride (PAH)/Au NPs exhibits high strain value of 6.8% with an actuation speed of 0.18 seconds for a 26 µm thick IPMC with 0.4 µm thick LbL CNCs under 4 volts. / Ph. D.
|
4 |
Ion Conducting Polyelectrolytes in Conductive Network Composites and Humidity Sensing Applications for Ionic Polymer-Metal Composite ActuatorsSkinner, Anna Penn 30 June 2016 (has links)
Ionic polymer-metal composites (IPMCs) are widely studied for their potential as electromechanical sensors and actuators. Bending of the IMPC depends on internal ion motion under an electric potential, and the addition of an ionic liquid and ionic self-assembled multilayer (ISAM) conductive network composite (CNC) strongly enhances bending and improves lifetime.
Ion conducting polyelectrolytes poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and Nafion® were incorporated into an ISAM CNC film with poly(allylamine hydrochloride) (PAH) and anionic gold nanoparticles actuators to further improve bending. CNC films were optimized for bending through pH adjustments in PAH and adding NaCl to the PAMPS and Nafion® solutions. PAMPS-containing actuators showed larger and faster bending than those containing Nafion® in the CNC.
The IPMC actuator was also evaluated for its potential as a humidity sensor based on its relative humidity (RH) dependent steady-state current. The detection range is at least 10-80%RH, with 5%RH increment differentiation and likely better resolution. Effects of CNC presence and thickness were studied, in conjunction with ionic liquid at a range of RH values. A thin CNC (pH 4 PAH) produced the greatest current differentiation between RH values. The current's response speed to a large RH decrease was approximately 4 times faster than that of a fast commercial digital hygrometer. Additionally, the presence of a CNC and ionic liquid improved the current response time. These results indicate that an IPMC based humidity sensor using a CNC and ionic liquid is very promising and merits further study. / Master of Science
|
5 |
Actuation and Charge Transport Modeling of Ionic Liquid-Ionic Polymer TransducersDavidson, Jacob Daniel 15 March 2010 (has links)
Ionic polymer transducers (IPTs) are soft sensors and actuators which operate through a coupling of micro-scale chemical, electrical, and mechanical mechanisms. The use of ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. This work aims to further the understanding of the dominant mechanisms of IPT actuation and how these are affected when an ionic liquid is used as solvent. A micromechanical model of IPT actuation is developed following a previous approach given by Nemat-Nasser, and the dominant relationships in actuation are demonstrated through an analysis of electrostatic cluster interactions. The elastic modulus of Nafion as a function of ionic liquid uptake is measured using uniaxial tension tests and modeled in a micromechanical framework, showing an excellent fit to the data. Charge transport is modeled by considering both the cation and anion of the ionic liquid as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs as compared to their water-based counterparts. Numerical simulations are performed using the finite element method, and a modified theory of ion transport is discussed which can be extended to accurately describe electrochemical migration of ionic liquid ions at higher applied voltages. The results presented here demonstrate the dominant mechanisms of IPT actuation and identify those unique to ionic liquid IPTs, giving directions for future research and transducer development. / Master of Science
|
6 |
Energy Absorption of Metal-FRP Hybrid Square TubesKalhor, Roozbeh 07 February 2017 (has links)
Lower-cost manufacturing methods have increased the anticipation for economical mass production of vehicles manufactured from composite materials. One of the potential applications of composite materials in vehicles is in energy-absorbing components such as hollow shells and struts (these components may be in the form of circular cylindrical shells, square and rectangular tubes, conical shells, and frusta). However, constructions which result in brittle fracture of the composite tubes in the form of circumferential or longitudinal corner crack propagation may lead to unstable collapse failure mode and concomitant very low energy absorption. As a result, metal-composite hollow tubes have been developed that combine the benefits of stable ductile collapse of the metal (which can absorb crushing energy in a controlled manner) and the high strength-to-weight ratio of the composites. The relative and absolute thicknesses of metal or FRP section has a substantial effect on energy absorption of the hybrid tubes. In particular, likelihood of delamination occurrence raises with increase in FRP thickness. This can reduce the energy absorption capability of the metal-FRP hybrid tubes. Additionally, adding a very thick FRP section may result in a global buckling failure mode (rather than local folding). Until now, there are no studies specifically addressing the effect of FRP thickness on energy absorption of hybrid tubes. In this study, the effects of fiber orientation and FRP thickness (the number of layers) on the energy absorption of S2-glass/epoxy-304 stainless steel square tubes were experimentally investigated. In addition, a new geometrical trigger was demonstrated which has positive effects on the collapse modes, delamination in the FRP, and the crush load efficiency of the hybrid tube.
To complete this study, a new methodology including the combination of experimental results, numerical modeling, and a multi-objective optimization process was introduced to obtain the best combination of design variables for hybrid metal-composite tubes for crashworthiness applications. The experimental results for the S2 glass/epoxy-304 stainless steel square tubes with different configurations tested under quasi-static compression loading were used to validate numerical models implemented in LS-DYNA software. The models were able to capture progressive failure mechanisms of the hybrid tubes. In addition, the effects of the design variables on the energy absorption and failure modes of the hybrid tubes were explained. Subsequently, the results from the numerical models were used to obtain optimum crashworthiness functions. The load efficiency factor (the ratio of mean crushing load to maximum load) and ratio between the difference of mean crushing load of hybrid and metal tube and thickness of the FRP section were introduced as objective functions. To connect the variables and the functions, back-propagation artificial neural networks (ANN) were used. The Non-dominated Sorting Genetic Algorithm–II (NSGAII) was applied to the constructed ANNs to obtain optimal results. The results were presented in the form of Pareto frontiers to help designers choose optimized configurations based on their manufacturing limitations. Such restrictions may include, but are not limited to, cost (related to the number of layers), laminate architecture (fiber orientation and stacking sequence) which can be constrained by the manufacturing techniques (i.e. filament winding) and thickness (as an example of physical constraints). / Ph. D. / In a car accident, the incident energy must be absorbed by elements of the vehicles to prevent it from being transferred to the occupants. (Indeed, a vehicle that is not damaged in a crash may lead to significant injury to occupants.) Typical energy absorbing elements in a vehicle include hollow shells and struts in the crumple zone, bumpers, and airbags. The focus of this study is on hollow thin-walled tubes in the form of hybrid metal-composite square tubes which have the potential to provide cost-effective structures for energy absorption applications. The behavior of these elements is complicated, requiring computationally intensive and time-consuming computer simulations to analyze their failure and to improve their design. The time required for these simulations may lead to long times before new elements are introduced into the marketplace. Consequently, the objective of this study is to provide an efficient and fast methodology to obtain the best hybrid structures for crashworthiness applications. To support the computational modeling, experimental results obtained from the samples with different configurations tested under quasi-static compression loading were used to validate the models. The effect of fiber orientation, stacking sequence, and thickness of the composite on energy absorption and failure modes were predicted using the models. To reduce the time associated with computational modeling, artificial neural networks (ANNs) were employed to fit the response at selected training points and to generate a pool of responses at other points. These responses may then be used by a designer to choose the best solution for a set of competing design constraints.
|
7 |
Modelling And Analysis Of Fish Inspired Ionic Polymer Metal Composite Flapping FinsKarthigan, G 05 1900 (has links) (PDF)
Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Therefore, there is a significant motivation for research on design and development of IPMC based biomimetic propulsion systems for underwater vehicles. In aerospace, underwater vehicles finds application for forensic studies of spaceship wrecks, missile fragments and any airplane accidents in sea and ocean terrains. Such vehicles can also survey moons and planets that house water oceans. Among biomimetic swimming systems, fish inspired swimming has gained interest since fish like swimming provides high maneuverability, high cruising speed, noiseless propulsion and efficient stabilization compared to conventional propulsion systems. In this work, the paired pectoral fin based oscillatory propulsion using IPMC for aquatic propulsor applications is studied. Dynamic characteristics of IPMC fin are analyzed using numerical simulations and optimization is used to improve the fin design. A complex hydrodynamic function is used to describe the behavior of an active IPMC fin actuator in water. The structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam to account for the electromechanical dynamics of the IPMC beam in water. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping fin. It is shown that the use of optimization methods can lead to significant improvement in performance of the IPMC fin. Further, three fish species with high performance flapping pectoral fin locomotion are chosen and performance analysis of each fin design is conducted to discover the better configurations for engineering applications. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are also analyzed. Finally, a comparative study is performed to analyze the performance of the three different biomimetic IPMC flapping pectoral fins.
|
8 |
Anisotropic Morphologies and Properties in Perfluorosulfonate Ionomer-Based MaterialsPark, Jong Keun 24 January 2010 (has links)
The overall goal of this investigation was to elucidate specific structure-property relationships in perfluorosulfonate ionomers (PFSIs)-related materials. The project can be broken into two primary foci. First, we explored the current state of understanding related to morphology-property relationships in PFSIs with specific attention to the nano-scale organization of the ionic and crystalline domains. Specifically, the effect of uniaxial orientation on the structure and transport properties of Nafion® membranes was examined. Small angle X-ray scattering (SAXS) experiments on dry membranes that were uniaxially elongated showed a strong anisotropic morphology which was shown to persist over the swelling process without a significant relaxation. Herman's order parameters for the ionomer peak were strongly influenced by uniaxial deformation, which supports the presence of cylindrical rather than spherical morphology for ionic domains. Comparison of the water diffusion coefficients between unoriented and oriented samples revealed that uniaxial deformation of Nafion® membranes essentially enhances transport ability in one direction (i.e., the parallel to draw direction) and suppresses in the other two directions (i.e., two orthogonal directions relative to the stretching direction). Based on 1-dimensional analyses of oriented SAXS patterns at the azimuthal angle 90o, three recent models (lamellar model, semicrystalline rod-like model and fringed-micelle model) for the morphology of PFSIs were critically evaluated. The loss of meridional scattering, different orientation behavior of the crystalline and ionic domains, and inherent chain stiffness precludes the possibility of a chain-folded lamellar morphology. While the inter-aggregate dimensions remain constant at high draw ratios, the inter-crystalline spacings decrease significantly. Coupled with the distinctly different orientation behavior, these observations preclude the existence of crystallites solely within rod-like aggregates. While the worm-like ionic channel model was able to explain the behavior of SAXS and wide angle X-ray scattering (WAXS) relatively well, this model also had limitations such as (1) crystalline domains directly linked to the ionic domain (and thus a lack of amorphous domains) and (2) a presence of only a single ionic channel between two neighboring crystallites.
Second, electroactive materials, specifically ionic polymer-metal composites (IPMCs) that undergo bending motions with the stimulus of a relatively weak electric field were fabricated. To understand the role of the nanoscale morphology of the membrane matrix in affecting the actuation behavior of IPMC systems, we evaluated actuation performance of IPMCs subjected to uniaxial orientation. The PFSI nanostructure altered by uniaxial orientation mimicked the fibrillar structure of biological muscle tissue and yielded a new anisotropic actuation response. It was evident that IPMCs cut from films oriented perpendicular to the draw direction yielded displacement values that were significantly greater than that of unoriented IPMCs. In contrast, IPMCs cut from films oriented parallel to the draw direction appeared to resist bending and yield displacement values that were much less than that of the unoriented IPMC. This anisotropic actuation behavior was attributed to the contribution of the nanoscale morphology to the bulk bending modulus. Overall, this study clearly demonstrated, for the first time, the importance of the nanoscale morphology in affecting/controlling the actuation behavior in IPMC systems. / Ph. D.
|
9 |
Pile à combustible à céramique conductrice protonique : développement, optimisation des matériaux, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600 °C / Proton-conducting Fuel Cell : Development, Optimisation of materialsElaboration of single cells operating in the 400-600 °C temperature rangeBatocchi, Pierre 01 June 2012 (has links)
Ce travail s'inscrit dans le cadre du développement des piles à combustible à céramique conductrice protonique (PCFC) opérant dans le domaine de température 400 – 600 °C et concerne l'optimisation des composants de la cellule élémentaire. L'optimisation du matériau électrolytique consiste à rechercher le meilleur compromis entre stabilité chimique et conductivité élevée. Le matériau BaCe0.9Y0.1O2.95, synthétisé par la voie flash combustion, présente la conductivité protonique la plus élevée (10-2 S.cm-1 à 600 °C) mais réagit fortement avec le CO2. La substitution partielle du cérium par le zirconium (BCZY) et le niobium (BCYN30) a conduit à une amélioration significative de la stabilité chimique tout en conservant une conductivité de l'ordre de 5 × 10-3 S.cm-1 à 600 °C. En ce qui concerne les électrodes, l'enjeu est de développer des matériaux présentant une conductivité électronique élevée, une porosité suffisamment importante et une bonne tenue mécanique. L'approche a consisté en la mise au point de stratégies d'élaboration (synthèse en une étape, utilisation de porogène) permettant le contrôle de la microstructure des matériaux anodiques afin de minimiser les résistances spécifiques surfaciques (ASR). Comme dans le cas des SOFC, les matériaux cathodiques sont conducteurs mixtes ionique-électronique (MIEC). Le développement de cathodes composites MIEC-électrolyte a permis de réduire significativement les ASR. Les tests en pile de cellules élémentaires PCFC ont révélé que les performances dépendaient essentiellement de la nature et de l'épaisseur du matériau électrolytique et de la mise en œuvre de matériaux d'électrode de morphologie contrôlée et architecturée. L'optimisation des assemblages a permis d'accroître sensiblement les performances (156 mW.cm-2 à 600 °C). / Materials components for a Proton Conducting Fuel Cell (PCFC) operating in the 400 – 600 °C temperature range have been optimised. Electrolyte material optimisation involved finding the best compromise between chemical stability and conductivity. BaCe0.9Y0.1O2.95, synthesised by flash combustion, exhibits the highest protonic conductivity (10-2 S.cm-1 at 600 °C) but reacts strongly with CO2. Partial substitution of cerium by zirconium (BCZY) and niobium (BCYN30) led to a significant improvement of the chemical stability without drastic effect on the conductivity (5 × 10-3 S.cm-1 at 600 °C). The aim for the electrodes is to develop materials which exhibit high electronic conductivity, sufficient degree of porosity and good mechanical properties. The approach comprised the development of elaboration strategies (one-step synthesis, use of porogen) that allow the control of microstructure in order to minimize area specific resistances (ASR) at the anode. As in the case of SOFCs, cathodic materials are mixed ionic-electronic conductors (MIEC). Development of composite cathodes MIEC-electrolyte led to a significant reduction of ASR. PCFC single cell tests showed that performance was mostly dependent on electrolyte thickness and composition, and on the characteristics of nanostructured electrodes with controlled architecture and porosity. Optimisation of assemblies led to fuel cells performances of 156 mW.cm-2 at 600 °C.
|
10 |
Modificação de poli(fluoreto de vinilideno) induzida por radiação gama para aplicação como compósito ionomérico de metal-polímero / Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal compositeFerreira, Henrique Perez 25 July 2011 (has links)
Foi estudada a enxertia de estireno induzida por radiação gama em filmes de poli(fluoreto de vinilideno) (PVDF) com espessura de 0,125 mm com doses entre 1 e 100 kGy em presença de soluções de estireno/N,Ndimetilformamida (DMF) (1:1, v/v) e estireno/tolueno (1:1, v/v) com taxa de dose de 5 kGy.h-1 por meio do método simultâneo de irradiação sob atmosfera de nitrogênio e em temperatura ambiente, usando raios gama de uma fonte de Co- 60. Depois de enxertados, os polímeros foram sulfonados em soluções de ácido clorossulfônico/1,2-dicloroetano (2 e 10 %). Os filmes foram caracterizados antes e depois de cada modificação com o cálculo do Grau de enxertia, (DOG), espectrometria no infravermelho (FT-IR), microscopia eletrônica de varredura (MEV), calorimetria exploratória diferencial (DSC) e termogravimetria (TG/DTG). Os resultados do grau de enxertia mostraram que a enxertia aumenta com o aumento da dose e varia enormemente de acordo com o solvente utilizado, com enxertias cerca de 20 vezes maiores quando do uso da DMF em relação ao do tolueno. Foi possível confirmar a enxertia do estireno por FT-IR graças ao aparecimento de novos picos característicos e por TG/DTG e DSC por meio das alterações do comportamento térmico dos materiais enxertados/sulfonados. Os materiais sulfonados ainda foram caracterizados por suas capacidades de troca iônica (IEC), que mostraram que tanto os aumentos do grau de enxertia quanto os da concentração do ácido clorossulfônico aumentam o IEC. Os resultados mostraram que é possível obter materiais com capacidades de troca iônica com possibilidade de aplicação como compósitos ionoméricos de metal-polímero. / Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites.
|
Page generated in 0.0791 seconds