• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 47
  • 47
  • 47
  • 47
  • 47
  • 47
  • 45
  • 14
  • 13
  • 12
  • 11
  • 8
  • 4
  • 2
  • Tagged with
  • 296
  • 165
  • 60
  • 48
  • 33
  • 29
  • 27
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Mejora en el proceso de planeamiento y control de la producción de la empresa de Fundición Metalurgia del Fierro y del Cobre S.R.L.

Pardo Villavicencio, Lucia Asunción 12 September 2019 (has links)
El presente proyecto de investigación se basa en la búsqueda de la mejora continua en el proceso de planeamiento y control de la producción en una empresa de la industria metalmecánica del Perú la cual ha ido creciendo rápidamente. Sin embargo, debido a los constantes cambios del mercado, se identifica que la demanda actual que maneja este sector es flexible. Para el cumplimiento de dicha demanda, las empresas han tenido que realizar una reestructuración del método de fabricación de sus productos. Sin embargo, algunas empresas aún siguen trabajando con el mismo método de fabricación para el cumplimiento de demanda constante. Un ejemplo, es la empresa Metalurgia del Fierro y del Cobre S.R. L. El problema actual que la empresa presenta es el incremento de pedidos atrasados, causando así una baja facturación durante el mes. Para la solución, se analizó que la causa principal es la mala planificación de la producción, debido a que la empresa no ha tenido un análisis previo de la demanda durante los años anteriores, esto tiene como causas que la parte operativa de la empresa tenga tiempos no estandarizados, constantes paradas de máquinas y la falta de stock de insumos. Para la solución de estas causas se propone las siguientes metodologías: Desarrollo de pronósticos basados la herramienta de suavización exponencial doble y la creación de un sistema de planificación y control de la producción bajo pedido y proponiendo la incorporación de nuevos procedimientos basados en la herramienta MRP II. / This research project is based on the search for continuous improvement in the process of planning and control of production in a company of the metalworking industry in Peru, which has been growing rapidly. However, due to the constant market changes, the current demand that manages this sector is flexible. To meet this demand, companies have had to restructure the manufacturing method of their products. However, some companies are still working with the same manufacturing method to meet constant demand. For example, it is the company Metalurgia del Fierro y del Cobre S.R. L. The current problem that the company presents is the increase in backorders, thus causing low turnover during the month. For the solution, the main cause was analyzed is the poor production planning, because the company has not had a previous analysis of the demand during the previous years, this has as causes that the operational part of the company has times not Standardized, constant machine shutdowns and lack of stock of inputs. For the solution of these causes, the following methodologies are proposed: Development of the specified double exponential smoothing method and the creation of a planning and control production system and proposing the incorporation of new specific procedures in the MRP II tool. / Tesis
152

Fundamental Experimental and Numerical Investigation Focusing on the Initial Stage of a Top-Blown Converter Process

Ersson, Mikael January 2008 (has links)
The aim of this thesis work is to increase the knowledge of phenomena taking place during the initial stage in a top blown converter. The work has been done in a few steps resulting in four different supplements. Water model experiments have been carried out using particle image velocimetry (PIV) technology. The system investigated was a fundamental top blown converter where an air jet was set to impinge on a water surface. The flow field of the combined blown case, where an air jet was introduced through a bottom nozzle, was also captured by the PIV. The work clearly showed that the flow field caused by an impinging top blown jet alone could not match that of the bottom blown case. The main re-circulation loop (or vortex) was investigated with respect to position and it was found that an increased flow rate pushes the center of the re-circulation loop downwards into the bath. However, for the top-blown case there is a point when the flow rate is too large to cause a distinguishable re-circulation loop since the jet becomes more plunging (i.e. penetrates deep into the bath) than impinging, with large surface agitation and splashing as a result.A numerical model with the same dimensions as the experimental system was then created. Three different turbulence models from the same family were tested: standard-, realizable- and a modified-(slight modification of one of the coefficients in order to produce less spreading of the air jet) k-ε turbulence model. It could be shown that for the family of k-ε turbulence models the difference in penetration depth was small and that the values corresponded well to literature data. However, when it comes to the position of the re-circulation loop it was shown that the realizable k-ε model produced better results when comparing the results to the experimental data produced from the PIV measurements, mentioned earlier.It was then shown how the computational fluid dynamics (CFD) model could be coupled to thermodynamics databases in order to solve for both reactions and transport in the system. Instead of an air-water system, a gas-steel-slag system was created using the knowledge obtained in the previous simulation step described above. Reactions between gas-steel, gas-slag, steel-slag and gas-steel-slag were considered. Extrapolation of data from a few seconds of simulation was used for comparison to experimental data from the literature and showed reasonable agreement. The overall conclusion was that it is possible to make a coupling of the Thermo-Calc databases and a CFD software to make dynamic simulations of metallurgical processes such as a top-blown converter.A parametric study was then undertaken where two different steel grades were tested; one with high initial carbon content (3.85 mass-%) and one with lower carbon content (0.5 mass-%). The initial silicon content was held constant at 0.84 mass-%. Different initial temperatures were tested and also some variation in initial dissolved oxygen content was tried. It was found that the rate of decarburization/desiliconization was influenced by the temperature and carbon concentration in the melt, where a high temperature as well as a high carbon concentration favors decarburization over desiliconization. It was also seen that the region affected by a lower concentration of alloys (or impurities) was quite small close to the axis where the impinging jet hits the bath. Add the oscillating nature of the cavity and it was realized that sampling from this region during an experiment might be quite difficult. / QC 20100720
153

Rapid solidification behaviour of Fe and Al based alloys

Ranganathan, Sathees January 2009 (has links)
Rapid solidification experiment on Fe-Cr-Mo-Mn-Si-C alloy was performed to investigate metastable phases formed during the solidification. A wide range of cooling rate was used to analyse the sample from melt spinning technique (~107 K/s) to water quenching method (~102 K/s). A single phase featureless structure was obtaind initially in the melt spinning experiment for 77Fe-8Cr-6Mn-5Si-4C alloy. Reduction of C and addition of Mo led to form a complete featureless structure for 2.85 mm rod for 72.8Fe-8Cr-5Mo-6Mn-5Si-3.2C. Subsequent investigation of influence of Mo, Cr and Mn on the single phase featureless structure concludes that 7.5 mm thick complete featureless phase could be formed at 63.8Fe-15Cr-7Mo-6Mn-5Si-3.2C alloy composition. In a separate attempt, powder samples of 40 μm dia. size complete featureless powders were produced for three slightly different compostions for the same alloy system. Characterisation of the featureless phases reveals that it could be a single phase metastable structure of ε phase or austenitic solid solution with high amount of alloying element dissolved in it. Subsequent heat treatment of this featureless phase of the rod and the powder at different temperatures formed bainitic ferrite with fine carbides dispersed in the austenitic matrix. Hardness values measured on featureless phase found to have influenced by the alloying element specially Mo, Cr and Mn. In an attempet to improve clean melting condition to extend the featureless phase and to form amorphous, an elliptic short arc lamp vaccum furnace was designed with 10 kW lamp power. Around 30 g of iron based alloy system was melted and cast as a 7 mm rod sample in a copper mould. Design details of new mirror and the lamp furnace are presented. In a separate study, influence of the melt temperature on Al-Y and Al-Si alloys were investigated by levitaion casting in a silver mould at around 2000 K/s cooling rate. Plate like structure of Al8Y3 primary phase was observed at low melt temperature with small percentage of peritectic transformation of Al8Y3 and liquid melt into Al9Y2. A pre-dentritic star like crystal of Al3Y was observed in a fine eutectic matrix at very high melt temperature. Amount and number of primary Si crystals formed in a unit area during the solidification increases as the melt temperature increases. / QC 20100805
154

A Study of the Heat Flow in the Blast Furnace Hearth Lining

Swartling, Maria January 2010 (has links)
The aim of the present thesis was to study the heat flows in the blast furnace hearth lining by experimental measurements and numerical modeling. Thermocouple data from an operating furnace have been used throughout the work, to verify results and to develop methodologies to use the results in further studies. The hearth lining were divided into two zones based on the thermocouple readings: a region with regular temperature variations due to the tapping of the furnace, and another region with slow temperature variations. In an experimental study, the temperatures of the outer surfaces of the wall and bottom were measured and compared with lining temperature measured by thermocouples. Expressions to describe the outer surface temperature profiles were derived and used as input in a two-dimensional steady state heat transfer model. The aim of the study was to predict the lining temperature profiles in the region subjected to slow temperature variations. The methodology to calculate a steady state lining temperature profile was used as input to a three-dimensional model. The aim of the three-dimensional model was primarily to study the region with dynamic lining temperature variations caused by regular tappings. The study revealed that the replacement of original lining with tap clay has an effect when simulating the quasi-stationary temperature variations in the lining. The study initiated a more detailed study of the taphole region and the size and shape of the tap clay layer profile. It was concluded, that in order to make a more accurate heat transfer model of the blast furnace hearth, the presence of a skull build-up below the taphole, erosion above the taphole and the bath level variations must to be taken into consideration. / QC 20100706
155

Solvent Refining of Metallurgical Grade Silicon Using Iron

Shaghayegh, Esfahani 31 December 2010 (has links)
Purification of metallurgical grade silicon (MG- Si) by a combination of solvent refining and physical separation has been studied. MG-Si was alloyed with iron and solidified under different cooling rates to grow pure Si dendrites from the alloy. The Si dendrites and FeSi2 that were formed after solidification were then separated by a gravity-based method. The separation method relies on significantly different densities of Si and FeSi2, and uses a heavy liquid with specific gravity between the two phases to float the former on the surface of a heavy liquid, while the latter sinks to the bottom. The effect of particle size and cooling rate on the Si yield and separation efficiency of the Si phase was investigated. The floated Si particles were further purified by removing the physically adherent Fe-Si phase, using an acid leaching method. Analysis of the produced silicon indicates that several impurity elements including P and B can be efficiently removed using this simple and low-cost technique.
156

Solvent Refining of Metallurgical Grade Silicon Using Iron

Shaghayegh, Esfahani 31 December 2010 (has links)
Purification of metallurgical grade silicon (MG- Si) by a combination of solvent refining and physical separation has been studied. MG-Si was alloyed with iron and solidified under different cooling rates to grow pure Si dendrites from the alloy. The Si dendrites and FeSi2 that were formed after solidification were then separated by a gravity-based method. The separation method relies on significantly different densities of Si and FeSi2, and uses a heavy liquid with specific gravity between the two phases to float the former on the surface of a heavy liquid, while the latter sinks to the bottom. The effect of particle size and cooling rate on the Si yield and separation efficiency of the Si phase was investigated. The floated Si particles were further purified by removing the physically adherent Fe-Si phase, using an acid leaching method. Analysis of the produced silicon indicates that several impurity elements including P and B can be efficiently removed using this simple and low-cost technique.
157

An Experimental and Numerical Study of the Heat Flow in the Blast Furnace Hearth

Swartling, Maria January 2008 (has links)
<p>This study has focused on determining the heat flows in a production blast furnace hearth. This part of the blast furnace is exposed to high temperatures. In order to increase the campaign length of the lining an improved knowledge of heat flows are necessary. Thus, it has been studied both experimentally and numerically by heat transfer modeling. Measurements of outer surface temperatures in the lower part of a production blast furnace were carried out. In the experimental study, relations were established between lining temperatures and outer surface temperatures. These relations were used as boundary conditions in a mathematical model, in which the temperature profiles in the hearth lining are calculated. The predictions show that the corner between the wall and the bottom is the most sensitive part of the hearth. Furthermore, the predictions show that no studied part of the lining had an inner temperature higher than the critical temperature 1150°C, where the iron melt can be in contact with the lining.</p>
158

Metallurgic industries of South Missouri

Gallaher, Philip. January 1884 (has links) (PDF)
Thesis--University of Missouri, School of Mines and Metallurgy, 1884. / The entire thesis text is included in file. Holograph [Handwritten in entirety by author]. Title from title screen of thesis/dissertation PDF file (viewed September 24, 2008)
159

An Experimental Study of a Liquid Steel Sampling Process

Ericsson, Ola January 2010 (has links)
During the steelmaking process samples are taken from the liquid steel, mainly to assess the chemical composition of the steel. Recently, methods for rapid determination of inclusion characteristics (size and composition) have progressed to the level where they can be implemented in process control. Inclusions in steel can have either good or detrimental effects depending on their characteristics (size, number, composition and morphology). Thereby, by determination of the inclusion characteristics during the steelmaking process it is possible to steer the inclusion characteristics in order to increase the quality of the steel. However, in order to successfully implement these methods it is critical that the samples taken from the liquid steel represent the inclusion characteristics in the liquid steel at the sampling moment.   The purpose of this study is to investigate the changes in inclusion characteristics during the liquid steel sampling process. Experimental studies were carried out at steel plants to measure filling velocity and solidification rate in real industrial samples. The sampling conditions for three sample geometries and two slag protection types were determined. Furthermore, the dispersion of the total oxygen content in the samples was evaluated as a function of sample geometry and type of slag protection. In addition, the effects of cooling rate as well as oxygen and sulfur content on the inclusion characteristics were investigated in laboratory and industrial samples. Possibilities to separate primary (existing in the liquid steel at sampling moment) and secondary (formed during cooling and solidification) inclusions depending on size and composition were investigated. Finally, in order to evaluate the homogeneity and representative of the industrial samples the dispersion of inclusion characteristics in different zones and layers of the samples were investigated.   It was concluded that the type of slag protection has a significant effect on the filling velocity and the sampling repeatability. Furthermore, that the thickness of the samples is the main controlling factor for the solidification rate. It was shown that top slag can contaminate the samples. Therefore, the choice of slag protection type is critical to obtain representative samples. It was shown that the cooling rate has a significant effect on the number of secondary precipitated inclusions. However, the number of primary inclusions was almost constant and independent on the cooling rate. In most cases it is possible to roughly separate the secondary and primary oxide inclusions based on the particle size distributions. However, in high-sulfur steels a significant amount of sulfides precipitate heterogeneously during cooling and solidification. This makes separation of secondary and primary inclusions very difficult. Moreover, the secondary sulfides which precipitate heterogeneously significantly change the characteristics (size, composition and morphology) of primary inclusions. The study revealed that both secondary and primary inclusions are heterogeneously dispersed in the industrial samples. In general, the middle zone of the surface layer is recommended for investigation of primary inclusions. / QC 20101112
160

Depth Profiling of the Passive Layer on Stainless Steel using Photoelectron Spectroscopy

Fredriksson, Wendy January 2012 (has links)
The physical properties of the protective passive films formed on the surface of stainless steels under electrochemical polarization in different electrolytes were studied. The structure of these films was analyzed as a function of depth using photoelectron spectroscopy (PES). Depth profiling (using PES) of the surface layer was achieved by either changing the angle of incidence to achieve different analysis depths (ARXPS), by argon ion etching, or by varying the energy of the incoming x-rays by the use of synchrotron radiation. The use of hard x-rays with high resolution (HAXPES) provided novel quantified information about the nickel content underneath the passive films. A complex environment was found in these surface layers composed of an outermost monolayer of iron on top of a layer of chromium hydroxides covering an underlayer of chromium oxides. Molybdenum was enriched in the interface between the metal and oxide. Nickel is enriched underneath the passive film and therefore nickeloxides are only present in the surface layer in low concentrations. A comparison was performed on austenitic and duplex stainless prepared by hot isostatically pressed (HIP) or cast and forged processes. HIP stainless steel was produced using the burgeoning technique of pressing gas atomized powders together. The structure of these steels is far more homogenous with a lower porosity than that of the conventionally prepared equivalents. It was shown that hot HIP austenitic steel had better pitting corrosion resistance than its conventional counterpart. Finally, the duplex steel was cycled in a Li-ion battery to explore its potential application as a current collector. It was shown that the passive film formed in the organic solvents is similar in composition and thickness to the films formed in aqueous solutions. However, it is doubtful if steel could be used as current collector in batteries due to its high reactivity with lithium.

Page generated in 0.0362 seconds