Spelling suggestions: "subject:"detals removal"" "subject:"acetals removal""
41 |
Sunkiųjų metalų šalinimas iš nuotėkų dumblo elektrocheminiu būdu / Heavy Metals Removal from Sewage Sludge using Electrochemical MethodBarišauskas, Giedrius 05 June 2005 (has links)
SUMMARY
Heavy Metals Removal from Sewage Sludge using Electrochemical Method
Giedrius Barišauskas
Magister thesis, 50 pages, 14 figure, 7 tables, 85 references.
Research object – municipal sewage sludge.
Research subject – electrochemical removal of heavy metals from sewage sludge.
Aim of this study – to investigate the efectiveness of electrochemical Pb, Cd and Cu removal from simulated heavy metal solutions and liquid organic wastes.
Tasks – to analyze scientific literature as well as normative documents regulating quality parameters of organic wastes and their products used in agriculture in respect of heavy metals. To investigate variation of Pb, Cd and Cu concentrations in Kaunas and Raseiniai sewage sludge; to carry out laboratory experiments of Pb, Cd and Cu removal from model heavy metal solutions as well as sewage sludge, evaluating decrease of both mobile and total metal concentrations.
Methods and instrumentation – following methods have been applied: chemical extraction (preparation of samples), gravitometric, ionometric, atomic absorption spectrophotometric. Results were evaluated using methods of statistical analysis.
Results – in case of monocomponent simulated heavy metal solutions 60–90 efficiency have been reached after 10 hours of electrochemical treatment, while in multicomponent systems and natural liquid sludge the removal percentage appeared to be lower. Depending upon removal from sludge efficiency heavy metals ranked in the... [to full text]
|
42 |
Remoção de metais pesados (Cd, Pb, Zn) utilizando como adsorventes argilas nacionais: Chocobofe e Chocolate B. / Removal of heavy metals (Cd, Pb, Zn) using as adsorbent national clays: Chocobofe and Chocolate B.SILVA, José Vanderley do Nascimento. 16 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-16T18:41:45Z
No. of bitstreams: 1
JOSÉ VANDERLEY DO NASCIMENTO SILVA - TESE PPGEQ 2015..pdf: 2308601 bytes, checksum: 9f12a4c2a7b8abc9470ef017ee29755e (MD5) / Made available in DSpace on 2018-03-16T18:41:45Z (GMT). No. of bitstreams: 1
JOSÉ VANDERLEY DO NASCIMENTO SILVA - TESE PPGEQ 2015..pdf: 2308601 bytes, checksum: 9f12a4c2a7b8abc9470ef017ee29755e (MD5)
Previous issue date: 2015-02 / Capes / O aumento da produção industrial tem proporcionado à geração de efluentes aquosos contaminados com íons de metais pesados. Esses devem ser tratados antes de serem descartados no meio ambiente. Por este motivo é muito importante à utilização de processos para reduzir ou eliminar metais pesados presentes em efluentes industriais. Dentre os vários processos existentes, a adsorção apresenta grande eficiência na remoção de metais presentes em baixas concentrações. As argilas têm apresentado ótimos resultados em processos de adsorção de metais pesados, o que motiva a busca por argilas que possuam maior afinidade com cada tipo de metal. Neste trabalho as argilas naturais esmectiticas Chocobofe e Chocolate B proveniente do estado da Paraíba foram investigadas com o objetivo de avaliar sua afinidade e capacidade para remoção de cádmio, chumbo e zinco. Realizou-se, inicialmente, a caracterização das argilas pelas técnicas: Difração de Raios X; Análises químicas; Análises térmicas (diferencial e gravimétrica); Espectroscopia na região do infravermelho; Adsorção Física de Nitrogênio; Microscopia eletrônica de varredura e capacidade de troca de cátions. Depois de caracterizadas, as argilas foram avaliadas quanto a sua capacidade de remoção (qeq) e seu percentual de remoção (%Rem) para os metais (Cádmio, Chumbo e Zinco), presentes em efluente sintético, através de sistema de banho finito. De forma a se obter uma maior eficiência na remoção dos metais, foi realizado um planejamento fatorial 22 avaliando duas variáveis de entrada: concentração inicial de metais pesados (10, 30 e 50 ppm) e pH (3, 4 e 5), para determinar as melhores condições de trabalho, no qual se
verificou que o pH= 5 e concentração inicial de 50 mg/g foram as condições que
apresentaram melhores resultados alcançando Valores de 88,54-99,44% de
percentagem de remoção e 3,36-4,43 mg/g de capacidade de remoção. A partir
desses dados foram desenvolvidos estudos cinéticos e isotermas de equilíbrio que
serviram de dados para avaliar a capacidade de adsorção das argilas com ajustes
feitos através dos modelos de Langmuir, Freundlich e Redlich-Peterson. Os
resultados dos testes cinéticos indicaram que o processo de remoção dos íons Cd2+,
Pb2+ e Zn2+ pelas argilas se aplicam ao mecanismo do modelo de velocidade de
pseudo-segunda ordem, sendo necessário um tempo de 10 minutos para alcançar o
equilíbrio. Os modelos matemáticos adotados para a modelagem dos dados
experimentais descreveram adequadamente a dinâmica da adsorção, produzindo
isotermas teóricas com comportamento bastante próximos daqueles encontrados
com as isotermas experimentais e que dos modelos utilizados, verifica-se que os
modelos de Langmuir e Redlich-Peterson apresentaram melhor ajuste aos dados
experimentais. A capacidade máxima de adsorção obtida pelas argilas Chocobofe e
Chocolate B foram: 18,35 -21,88 mg. g-1 para o Pb2+; 10,0-11,20 mg. g-1 para o Cd2;
8,64-8,69 mg.g-1 para o Zn2, indicando uma seletividade das argilas em relação aos
metais em estudo uma sequência de afinidade: Pb2+ > Cd2 > Zn2. Assim, os
resultados experimentais indicaram que as argilas bentonitas podem ser utilizadas
como adsorventes para a eliminação dos metais Cádmio, Chumbo e Zinco de aguas
e efluentes contaminados por meio do mecanismo de adsorção. / The increase in industrial production has provided the generation of wastewater
contaminated with heavy metal ions. These must be treated before disposal into the
environment. For this reason it is very important to the use of processes to reduce or
eliminate heavy metals from industrial effluents. Among the many existing processes,
adsorption has great efficiency in the removal of metals present in low
concentrations. Clays have shown excellent results in heavy metal adsorption
processes, which motivates the search for clays having higher affinity with each type
of metal. In this work the smectite clays natural Chocobofe and Chocolate B from the
state of Paraíba were investigated in order to evaluate their affinity and capacity for
the removal of cadmium, lead and zinc. Held, initially, the characterization of clays by
techniques: X-ray diffraction; Chemical analysis; Thermal analysis (differential and
gravimetric); Spectroscopy in the infrared region; Adsorption Nitrogen Physics;
Scanning electron microscopy and capacity of cation exchange. After characterized
the clays were evaluated for removal capacity (q and q) and its removal percentage
(% Rem) to metals (cadmium, lead and zinc) present in synthetic wastewater through
finite bath system. In order to achieve greater efficiency in the removal of metals a 22
factorial experimental design was conducted to evaluate two input variables: initial
concentration of heavy metals (10, 30 and 50 ppm) and pH (3, 4 and 5) to determine
the best working conditions, which revealed that the pH = 5 and initial concentration
of 50 mg/g were the conditions that showed better results from 88.54 to 99.44%
reaching values of percentage removal and 3,36- 4.43 mg/g of removability. From
these data were developed kinetic and equilibrium isotherms that served data to
evaluate the adsorption capacity of clays with adjustments made through the
Langmuir, Freundlich and Redlich-Peterson. The results of the kinetic tests indicated
that the removal of Cd2+ ions, Pb2+ and Zn2+ the clay are applied to the mechanism of
the pseudo-second-order rate model, a time of 10 minutes is required to reach
equilibrium. The mathematical models used to model the experimental data
adequately describe the dynamics of adsorption, producing theoretical isotherms
quite close to those found behavior with experimental isotherms and that of the
models used, it appears that the Langmuir and Redlich-Peterson showed better fit to
the experimental data. The maximum adsorption capacity obtained by clays
Chocobofe and Chocolate B were 18.35 -21.88 mg. g-1 for Pb2+; 10.0 to 11.20 mg. g-1
for Cd2+; 8.64 to 8.69 mg.g-1 for Zn2+, indicating a selectivity of clays in relation to
studying a metal affinity sequence: Pb2+> Cd2+> Zn2+. Thus, the experimental results
indicate that the bentonite clays can be used as adsorbents for the removal of metals
cadmium, lead and zinc contaminated water and effluent by adsorption mechanism.
|
43 |
Humic acid pretreatment for enhancing microbial removal of metals from a synthetic 'wastewater'.Desta, Tsegazeab Goje. January 2004 (has links)
The presence of heavy metal ions in waste streams is one of the most pervasive
environmental issues of present times. A rotating biological contactor (RBC) was used
to investigate the potential capacity of microbial biofilms in remediation of the metal
ion species from a mixed metal contaminated effluent solution containing Cr+3
, Pb+2
and Cu+2
, each at a concentration of 200 mg r1
• In the first part of this study the
effectiveness of various support materials for the development of microbial biofilms
capable of removing heavy metals from a synthetic effluent was investigated. EDX
analysis showed that none of the support matrices investigated, viz. gravel, polyester
batting and sand, adsorbed metal ions on their surfaces; hence, metal adsorption was
due purely to microbial activities. The biofilms attached more firmly and uniformly to
polyester batting than to gravel and sand. The characteristics of polyester batting which
made it a superior support matrix were its surface roughness and porous hydrophilic
nature, which provided a larger surface area for the adhesion of microorganisms and
attraction of nutrients during the biofilm development process.
The selective accumulation of metal ion specIes by various microbial populations
grown as biofilm using polyester batting as support matrix in separate compartments of
a single-stage RBC bioreactor was examined. Lead ions were readily accumulated by
almost all the microbial biofilms tested. Fungus-dominated biofilms selectively
accumulated chromium ions whereas biofilms comprising mainly bacteria more readily
accumulated copper ions from the mixed metal contaminated effluent solution.
However, where interactions between the bacterial and fungal components were
encouraged the mechanical stability of the biofilms was enhanced so that large amounts
of all three metal ion species were removed by this biofilm.
The combined effect of a series of bench-scale columns containing liquid humic acid
and a three stage RBC bioreactor on the removal of metal ion species from a mixed
metal contaminated effluent was investigated. After seven days of treatment the
combined system had removed approximately 99% of the Cr+3, 98% of the Pb+2 and 90% of the Cu+2 ions from the mixed metal contaminated synthetic effluent.
Complexation of the metal ions with humic acid was the predominant factor accounting
for approximately 68-86% Cr+3
, 70-86% Pb+2 and 53-73% Cu+2 removal levels within
the columns. A large proportion of the remaining Cr+3 and Pb+2, but not of the Cu+2,
was removed in compartment 1 of the RBC. This suggested that the presence of the
former two metals in solution might have reduced the removal of the Cu+2 ions from the
system. The removal of substantially large amounts of the competing ions chromium
and lead during the initial stages of the treatment process meant that copper was
successfully taken up in the second and third RBC compartments. Hence, the economy
of the treatment process was improved as larger quantities of the metal ions were
removed in a shorter period of time than was possible when using the individual
treatments (humic acid-metal complexation and biofilm adsorption) separately. More
than 75%,92% and 86% of the adsorbed Cr+3
, Pb+2 and Cu+2 ions, respectively, were
recovered from the three RBC bioreactor compartments following repeated washing of
the biofilms with 0.1 M HCI. This relatively easy desorption suggested that the metal
ions were simply adsorbed onto the surfaces of the biofilm cells rather than being taken
into the cytoplasm of the cells. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2004.
|
44 |
Surexpression de métallothionéines dans Nicotiana plumbaginifolia: impact sur l'homéostasie et la détoxication des métaux lourdsHeudiard, Alban January 2007 (has links)
A des concentrations supra-optimales, les métaux lourds essentiels (comme le Cu, Zn ou Ni) ou les métaux lourds non essentiels (comme le Cd, Pb ou Hg) peuvent être toxiques. La contamination des sols et de l’eau par des métaux lourds toxiques est un problème mondial qui peut nuire à l’environnement et à la santé humaine. En particulier, le cadmium est l’un des métaux lourds les plus toxiques pour les organismes. L’utilisation de plantes pour extraire ou dégrader les polluants (dans le cas de polluants organiques) constitue une stratégie intéressante, à bas coût et respectueuse de l’environnement pour remédier au problème des sites pollués. Pour une phytoextraction des métaux lourds, les plantes doivent avoir une croissance rapide, développer des biomasses importantes et accumuler des niveaux élevés de métaux lourds dans leurs parties récoltables. En d’autres termes, elles doivent être très tolérantes et accumulatrices. Une alternative consiste à utiliser des plantes tolérantes de façon à contenir la pollution (pour réduire la biodisponibilité et limiter la dispersion dans l’environnement). Des gènes d’une banque d’ADNc synthétisée à partir d’un hyperaccumulateur Cd/Zn Thlaspi caerulescens, dont l’expression augmente la tolérance au Cd dans les cellules, ont été identifiés. Dans cette thèse de Doctorat, notre but est d’une part de contribuer à la caractérisation fonctionnelle de ces gènes et d’autre part de créer de nouveaux outils en vue d’améliorer les techniques de phytoremédiation. Nous avons sélectionné deux séquences codant pour des protéines riches en cystéines, capables de lier certains métaux lourds et d’augmenter la tolérance au cadmium :une métallothionéine de type 3 (Tc-MT3) et une métallothionéine potentielle (MRP) provenant d’un organisme contaminant de la banque d’ADNc. Nous avons générer des lignées de tabac exprimant TcMT3 ou MRP, sous le contrôle d’un promoteur fort et constitutif, CaMV35S. Les plantes MT3 et MRP ont présenté un retard de croissance par rapport aux plantes contrôles, en croissance sur milieu non contaminé. Différents tests de croissance ont été réalisés en présence d’excès de Zn, Ni ou Cu et dans des milieux modifié avec du Cd. Nous avons remarqué qu’en présence de plusieurs métaux lourds en particulier le Cu et le Cd, les plantes Tc-MT3 et MRP étaient plus tolérantes que les plantes contrôles. La tolérance au Cd était la plus augmentée dans les plantes MRP. Les plantes Tc-MT3 ou MRP semblaient avoir un besoin en métaux lourds plus grand. L’accumulation des métaux lourds dans les parties aériennes n’était pas augmentée mais la minéralomasse des plantes Tc-MT3 et MRP l’était sur sol contaminé de la Région Bruxelloise. Une analyse biochimique a confirmé un changement dans le statu rédox de ces plantes. Une tendance à un statut plus oxydant a été observée dans les milieux non contaminés. Enfin, l’induction d’une métallochaperonne (CCH) du Cu indique une diminution de la biodisponibilité de cet élément, alors que la concentration totale n’est pas altérée. Il semble donc que pour la première fois, des métallothionéines puissent entrer en compétition avec une métallochaperonne végétale. Cette compétition pour les métaux pourrait être à l’origine de l’altération du statut rédox, du retard de croissance ainsi que de la meilleure tolérance aux métaux lourds. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
45 |
Development of a sensitive electrochemical sensor based on carbon dots and graphitic carbon nitride for the detection of 2-chlorophenol and arsenic (III) in waterMoundzounga, Theo Herman Gael 02 1900 (has links)
M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / The presence of organic and inorganic pollutants in aqueous environments is one of the major challenges confronting man. It is therefore important to develop sensitive, versatile and cheap techniques for their detection. Arsenic (III), 2-chlorophenol (2-CP) and sulfamethoxazole (SMX) are priority pollutants that pose health threats to humans and animals. This study was thus aimed at exploring two promising carbon nanomaterials as electrode modifiers for the electrochemical sensing of arsenic (III), 2-CP and SMX in water. Glassy carbon electrode (GCE) was modified with a nanocomposite of carbon dots (CDs) and graphitic carbon nitride (g-C3N4) and used as a sensor for the analytes in aqueous media. The CDs was prepared by a facile one-pot hydrothermal method using pine cone as the carbon source; g-C3N4 and g-C3N4/CDs nanocomposite were prepared via the microwave irradiation heating method. CDs, g-C3N4 and g-C3N4/CDs were dropped-dried on the surface of bare GCE. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the prepared materials. GCE, g-C3N4/GCE, CDs/GCE and g-C3N4/CDs/GCE electrodes were electrochemically investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) using a ferrocyanide [Fe (CN) 6]3-/4- redox probe. The current and the reversibility of the redox probes were enhanced in the presence of modifiers. The electrochemical behavior of arsenic (III), 2-CP and SMX on different electrodes (GCE, CDs/GCE, g-C3N4/GCE and g-C3N4/CDs/GCE) were investigated by differential pulse voltammetry (DPV) under optimized conditions in a phosphate buffer solution (pH 7.6, 6 and 5 for 2-CP, As (III) and SMX respectively). The results demonstrated that the g-C3N4/CDs/GCE electrode significantly enhanced the oxidation peak current of all three analytes. The detection sensitivity of the analytes was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic (III), 2-CP and SMX in water. The oxidation peak currents displayed a linear relationship to concentrations for 2-CP (0.5 - 2.5 μM, R2=0.958, n=5), arsenic (III) (2 - 10 μM R2=0.978, n=5) and SMX (0.3 - 1.3 μM R2=0.9906, n=5). The detection limits of 0.62 μM, 1.64 μM and 0.10 μM were obtained for 2-CP, arsenic and SMX, respectively. Phenol and 4-chloro-3-methyl-phenol were found to interfere with the detection of 2-CP, while, Cu2+, Zn2+, Pb2+ and Cd2+ were the only significant ions that interfered with the electrochemical detection of arsenic (III). EDTA was used as a ligand to mask the interference effects of copper, cadmium, lead and zinc on arsenic sensing. The modified electrode (g-C3N4/CDs/GCE) was used to determine arsenic, 2-CP and SMX in spiked tap and effluent water samples by the standard addition method and the results showed percentage recoveries varying from 93-118% for 2-CP, 98-100% for arsenic and 80-105% for SMX. The outcomes of this study established that the nanocomposite material represents an easy and sensitive sensing platform for the monitoring of arsenic (III), 2-CP and SMX in aqueous media.
|
46 |
Optimization of ion exchange process on the removal of heavy metals from cooling tower water and regeneration of ion exchange resins.Mbedzi, Robert Mbavhalelo 06 1900 (has links)
M.Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / In the present study, the removal of Ca2+ and Mg2+ from cooling tower water using Amberlite IR120 and Amberjet 1200 was studied by the application of one factor at a time method (OFAT) and response surface modelling (RSM). The effect of operational parameters such as contact time (min), pH, dosage (mL), concentration (mg/L) and temperature (K) were investigated using central composite design. The regeneration of the Amberlite IR120 and Amberjet were also studied. The purpose of the study was to apply OFAT and RSM to investigate and optimize the ion exchange operating parameters. Furthermore, the second-order empirical model that was developed, using the analysis of variance (ANOVA), presented a sufficient correlation to the ion exchange experimental data. The optimal ion exchange operating conditions for Amberlite IR120 and Amberjet 1200 were found to be: contact time was 120 min, dosage of 150mL, initial pH level of 2, concentration of 400mg/L and temperature of 343K. Regeneration of Amberlite IR120 and Amberjet 1200 using 0.5 M NaCl stripping solution initially showed an increase in % Ca2+ and Mg2+ removal, then a decrease in subsequent cycles. The correlation coefficients (R2) of Langmuir, Freudlich and Tempkin isotherms were found to range from 0.92 to 1 and this suggest that experimental data best described the models. However correlation coefficients (R2) for Dubinin–Radushkevich (D-R) model were found to range between 0.5 to 0.8 and this means that experimental data does not fit the model. Thermodynamic functions such as entropy (Δ𝑆𝑜), enthalpy (Δ𝐻𝑜) and change of free energy (Δ𝐺𝑜) were obtained from the gradient and intercepts of straight line graphs. The positive values of ΔG° were found meaning that the adsorption is not spontaneous and positive values of ΔH° were found meaning the endothermic type of adsorption which indicate the chances of physical adsorption.The correlation coefficient (R2) values of pseudo-first-order, pseudo-second-order and intraparticle models were found to range from 0.89 to 1 on both metals as shown in table 4.4. This observation clearly indicates that pseudo-first-order, pseudo-second-order and intraparticle diffusion models best describe the experimental data in the removal Ca2+ and Mg2+ from cooling tower water.
|
47 |
Investigating industrial effluent impacts on municipal wastewater treatment plantIloms, Eunice Chizube 07 1900 (has links)
Industrial effluents with high concentrations of heavy metals are widespread pollutants of great concerns as they are known to be persistent and non-degradable. Continuous monitoring and treatment of the effluents become pertinent because of their impacts on wastewater treatment plants. The aim of this study is to determine the correlation between heavy metal pollution in water and the location of industries in order to ascertain the effectiveness of the municipal waste water treatment plant. Heavy metal identification and physico-chemical analysis were done using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and multi-parameter probe respectively. Correlation coefficients of the measured values were done to investigate the effect of the industrial effluents on the treatment plants. Heavy metal resistant bacteria were identified and characterised by polymerase chain reaction and sequencing. Leeuwkuil wastewater treatment plants were effective in maintaining temperature, pH, and chemical oxygen demand within South Africa green drop and SAGG Standards whereas the purification plant was effective in maintaining the values of Cu, Zn, Al, temperature, BOD, COD, and TDS within the SANS and WHO standard for potable water. This findings indicated the need for the treatment plants to be reviewed.The industrial wastewater were identified as a point source of heavy metal pollution that influenced Leeuwkuil wastewater treatment plants and the purification plants in Vaal, Vereenining South Africa. Pseudomonas aeruginosa, Serratia marcescens, Bacillus sp. strain and Bacillus toyonensis that showed 100% similarity were found to be resistant to Al, Cu, Pb and Zn. These identified bacteria can be considered for further study in bioremediation. / Environmental Sciences / M. Sc. (Environmental Science)
|
Page generated in 0.0502 seconds