• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Parameterschätzung für elastisch-plastische Deformationsgesetze bei Berücksichtigung lokaler und globaler Vergleichsgrößen

Benedix, Ulrich 18 August 2000 (has links) (PDF)
Der Begriff ¨Parameteridentifikation¨ bedeutet die Berechnung von Parametern eines (i. a. nichtlinearen) Modells eines physikalischen Prozesses durch Minimierung eines Fehlerquadratfunktionals aus gemessenen und mit Hilfe des Modells berechneten Vergleichswerten. Unter einer ¨Parameterschätzung¨ wird zusätzlich die Bestimmung von Konfidenzintervallen der optimalen Parameter und von Korrelationskoeffizienten der Parameter untereinander verstanden. In der vorliegenden Untersuchung wurde eine Parameterschätzung am Beispiel elastisch-plastischer Deformationsgesetze für kleine Verzerrungen vorgenommen, wobei als experimentelle Vergleichswerte sowohl lokale Größen (Spannungen) als auch globale Größen (Biegemoment und Längskraft) zur Verfügung standen. Die Integration des nichtlinearen Deformationsgesetzes erfolgte mit Hilfe des impliziten Euler-Verfahrens. Die Sensitivitätsanalyse zur Bestimmung der für die anschließende Optimierung benötigten Ableitungen der Vergleichsgrößen nach den Parametern ist eingebettet in den Integrationsalgorithmus. Zur Optimierung der Zielfunktion wurde das Levenberg-Marquardt-Verfahren verwendet. Anhand von Berechnungsergebnissen für unterschiedliche Modellfunktionen bei Einbeziehung verschiedenartiger Versuche werden Beispiele für erfolgreiche Parameterschätzungen sowie für das Auftreten systematischer Fehler und überparametrisierter Modelle angegeben. / The aim of the ``parameter identification'' is the calculation of parameters of a (generally nonlinear) model of a physical process by minimization of a least squares functional containing differences between measured and numerical calculated comparative quantities. ``Parameter estimation'' includes additionally the determination of confidence intervals of the optimal parameters and the calculation of correlation coefficients of the parameters to each other. The present investigation deals with the parameter estimation in case of an elastic-plastic deformation law for small strains considering both local quantities (stresses) and global quantities (bending moment and longitudinal force) as experimental values. The integration of the nonlinear deformation law has been done by the implicit Euler method. The sensitivity analysis to determine the derivatives of the comparative quantities with respect to the parameters needed for the optimization process is embedded into the integration algorithm.The optimization of the objective function has been carried out using the Levenberg-Marquardt algorithm. Numerical results of the successful parameter estimation in case of different models and analyzing various experiments are presented. Some examples detecting the occurance of systematic errors and overparameterized models are given.
12

Development and test of interaction potentials for complex metallic alloys Entwicklung und Test von Wechselwirkungspotenzialen für komplexe intermetallische Verbindungen /

Brommer, Peter. January 2008 (has links)
Stuttgart, Univ., Diss., 2007.
13

Towards meshless volume visualization

Tejada-Gamero, Eduardo Jose. January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008. / Druckausg. beim Shaker Verl., Aachen erschienen.
14

Entwicklung und Test von Wechselwirkungspotenzialen in Quasikristallen

Brommer, Peter. January 2003 (has links)
Stuttgart, Univ., Diplomarb., 2003.
15

Ein stark konsistenter Kleinst-Quadrate-Schätzer in einem linearen Fuzzy-Regressionsmodell mit fuzzy Parametern und fuzzy abhängigen Variablen

Stahl, Christoph. January 2004 (has links) (PDF)
Saarbrücken, Univ., Diss., 2004.
16

Parameterschätzung für elastisch-plastische Deformationsgesetze bei Berücksichtigung lokaler und globaler Vergleichsgrößen

Benedix, Ulrich 19 May 2000 (has links)
Der Begriff ¨Parameteridentifikation¨ bedeutet die Berechnung von Parametern eines (i. a. nichtlinearen) Modells eines physikalischen Prozesses durch Minimierung eines Fehlerquadratfunktionals aus gemessenen und mit Hilfe des Modells berechneten Vergleichswerten. Unter einer ¨Parameterschätzung¨ wird zusätzlich die Bestimmung von Konfidenzintervallen der optimalen Parameter und von Korrelationskoeffizienten der Parameter untereinander verstanden. In der vorliegenden Untersuchung wurde eine Parameterschätzung am Beispiel elastisch-plastischer Deformationsgesetze für kleine Verzerrungen vorgenommen, wobei als experimentelle Vergleichswerte sowohl lokale Größen (Spannungen) als auch globale Größen (Biegemoment und Längskraft) zur Verfügung standen. Die Integration des nichtlinearen Deformationsgesetzes erfolgte mit Hilfe des impliziten Euler-Verfahrens. Die Sensitivitätsanalyse zur Bestimmung der für die anschließende Optimierung benötigten Ableitungen der Vergleichsgrößen nach den Parametern ist eingebettet in den Integrationsalgorithmus. Zur Optimierung der Zielfunktion wurde das Levenberg-Marquardt-Verfahren verwendet. Anhand von Berechnungsergebnissen für unterschiedliche Modellfunktionen bei Einbeziehung verschiedenartiger Versuche werden Beispiele für erfolgreiche Parameterschätzungen sowie für das Auftreten systematischer Fehler und überparametrisierter Modelle angegeben. / The aim of the ``parameter identification'' is the calculation of parameters of a (generally nonlinear) model of a physical process by minimization of a least squares functional containing differences between measured and numerical calculated comparative quantities. ``Parameter estimation'' includes additionally the determination of confidence intervals of the optimal parameters and the calculation of correlation coefficients of the parameters to each other. The present investigation deals with the parameter estimation in case of an elastic-plastic deformation law for small strains considering both local quantities (stresses) and global quantities (bending moment and longitudinal force) as experimental values. The integration of the nonlinear deformation law has been done by the implicit Euler method. The sensitivity analysis to determine the derivatives of the comparative quantities with respect to the parameters needed for the optimization process is embedded into the integration algorithm.The optimization of the objective function has been carried out using the Levenberg-Marquardt algorithm. Numerical results of the successful parameter estimation in case of different models and analyzing various experiments are presented. Some examples detecting the occurance of systematic errors and overparameterized models are given.
17

Least Squares in Sampling Complexity and Statistical Learning

Bartel, Felix 19 January 2024 (has links)
Data gathering is a constant in human history with ever increasing amounts in quantity and dimensionality. To get a feel for the data, make it interpretable, or find underlying laws it is necessary to fit a function to the finite and possibly noisy data. In this thesis we focus on a method achieving this, namely least squares approximation. Its discovery dates back to around 1800 and it has since then proven to be an indispensable tool which is efficient and has the capability to achieve optimal error when used right. Crucial for the least squares method are the ansatz functions and the sampling points. To discuss them, we gather tools from probability theory, frame subsampling, and $L_2$-Marcinkiewicz-Zygmund inequalities. With that we give results in the worst-case or minmax setting, when a set of points is sought for approximating a class of functions, which we model as a generic reproducing kernel Hilbert space. Further, we give error bounds in the statistical learning setting for approximating individual functions from possibly noisy samples. Here, we include the covariate-shift setting as a subfield of transfer learning. In a natural way a parameter choice question arises for balancing over- and underfitting effect. We tackle this by using the cross-validation score, for which we show a fast way of computing as well as prove the goodness thereof.:1 Introduction 2 Least squares approximation 3 Reproducing kernel Hilbert spaces (RKHS) 4 Concentration inequalities 5 Subsampling of finite frames 6 L2 -Marcinkiewicz-Zygmund (MZ) inequalities 7 Least squares in the worst-case setting 8 Least squares in statistical learning 9 Cross-validation 10 Outlook
18

Multiple Outlier Detection: Hypothesis Tests versus Model Selection by Information Criteria

Lehmann, Rüdiger, Lösler, Michael 14 June 2017 (has links) (PDF)
The detection of multiple outliers can be interpreted as a model selection problem. Models that can be selected are the null model, which indicates an outlier free set of observations, or a class of alternative models, which contain a set of additional bias parameters. A common way to select the right model is by using a statistical hypothesis test. In geodesy data snooping is most popular. Another approach arises from information theory. Here, the Akaike information criterion (AIC) is used to select an appropriate model for a given set of observations. The AIC is based on the Kullback-Leibler divergence, which describes the discrepancy between the model candidates. Both approaches are discussed and applied to test problems: the fitting of a straight line and a geodetic network. Some relationships between data snooping and information criteria are discussed. When compared, it turns out that the information criteria approach is more simple and elegant. Along with AIC there are many alternative information criteria for selecting different outliers, and it is not clear which one is optimal.
19

Numerical methods for backward stochastic differential equations of quadratic and locally Lipschitz type

Turkedjiev, Plamen 17 July 2013 (has links)
Der Fokus dieser Dissertation liegt darauf, effiziente numerische Methode für ungekoppelte lokal Lipschitz-stetige und quadratische stochastische Vorwärts-Rückwärtsdifferenzialgleichungen (BSDE) mit Endbedingungen von schwacher Regularität zu entwickeln. Obwohl BSDE viele Anwendungen in der Theorie der Finanzmathematik, der stochastischen Kontrolle und der partiellen Differenzialgleichungen haben, gibt es bisher nur wenige numerische Methoden. Drei neue auf Monte-Carlo- Simulationen basierende Algorithmen werden entwickelt. Die in der zeitdiskreten Approximation zu lösenden bedingten Erwartungen werden mittels der Methode der kleinsten Quadrate näherungsweise berechnet. Ein Vorteil dieser Algorithmen ist, dass sie als Eingabe nur Simulationen eines Vorwärtsprozesses X und der Brownschen Bewegung benötigen. Da sie auf modellfreien Abschätzungen aufbauen, benötigen die hier vorgestellten Verfahren nur sehr schwache Bedingungen an den Prozess X. Daher können sie auf sehr allgemeinen Wahrscheinlichkeitsräumen angewendet werden. Für die drei numerischen Algorithmen werden explizite maximale Fehlerabschätzungen berechnet. Die Algorithmen werden dann auf Basis dieser maximalen Fehler kalibriert und die Komplexität der Algorithmen wird berechnet. Mithilfe einer zeitlich lokalen Abschneidung des Treibers der BSDE werden quadratische BSDE auf lokal Lipschitz-stetige BSDE zurückgeführt. Es wird gezeigt, dass die Komplexität der Algorithmen im lokal Lipschitz-stetigen Fall vergleichbar zu ihrer Komplexität im global Lipschitz-stetigen Fall ist. Es wird auch gezeigt, dass der Vergleich mit bereits für Lipschitz-stetige BSDE existierenden Methoden für die hier vorgestellten Algorithmen positiv ausfällt. / The focus of the thesis is to develop efficient numerical schemes for quadratic and locally Lipschitz decoupled forward-backward stochastic differential equations (BSDEs). The terminal conditions satisfy weak regularity conditions. Although BSDEs have valuable applications in the theory of financial mathematics, stochastic control and partial differential equations, few efficient numerical schemes are available. Three algorithms based on Monte Carlo simulation are developed. Starting from a discrete time scheme, least-square regression is used to approximate conditional expectation. One benefit of these schemes is that they require as an input only the simulations of an explanatory process X and a Brownian motion W. Due to the use of distribution-free tools, one requires only very weak conditions on the explanatory process X, meaning that these methods can be applied to very general probability spaces. Explicit upper bounds for the error are obtained. The algorithms are then calibrated systematically based on the upper bounds of the error and the complexity is computed. Using a time-local truncation of the BSDE driver, the quadratic BSDE is reduced to a locally Lipschitz BSDE, and it is shown that the complexity of the algorithms for the locally Lipschitz BSDE is the same as that of the algorithm of a uniformly Lipschitz BSDE. It is also shown that these algorithms are competitive compared to other available algorithms for uniformly Lipschitz BSDEs.
20

Multiple Outlier Detection: Hypothesis Tests versus Model Selection by Information Criteria

Lehmann, Rüdiger, Lösler, Michael January 2016 (has links)
The detection of multiple outliers can be interpreted as a model selection problem. Models that can be selected are the null model, which indicates an outlier free set of observations, or a class of alternative models, which contain a set of additional bias parameters. A common way to select the right model is by using a statistical hypothesis test. In geodesy data snooping is most popular. Another approach arises from information theory. Here, the Akaike information criterion (AIC) is used to select an appropriate model for a given set of observations. The AIC is based on the Kullback-Leibler divergence, which describes the discrepancy between the model candidates. Both approaches are discussed and applied to test problems: the fitting of a straight line and a geodetic network. Some relationships between data snooping and information criteria are discussed. When compared, it turns out that the information criteria approach is more simple and elegant. Along with AIC there are many alternative information criteria for selecting different outliers, and it is not clear which one is optimal.

Page generated in 0.1044 seconds