• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 23
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 55
  • 32
  • 22
  • 19
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modelagem matematica da polimerização via radical livre controlada usando mecanismo RAFT (transferencia de cadeia reversivel por adição-fragmentação) / Mathematical modeling of living free radical polymerization using mechanism (reversible addition-fragmentation chain transfer)

Franco, Ivan Carlos, 1976- 15 February 2007 (has links)
Orientador: Liliane Maria Ferrareso Lona / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-07T23:37:08Z (GMT). No. of bitstreams: 1 Franco_IvanCarlos_M.pdf: 1044560 bytes, checksum: 8f4fdd66626d63245a2131f55b09f807 (MD5) Previous issue date: 2007 / Resumo: Polimerização via radical livre controlada (CRP) tem recebido cada vez mais atenção como uma técnica para produção de polímeros com micro estrutura altamente controlada. Em particular, distribuições de pesos moleculares estreitas são obtidas, com polidispersidade muito próxima de um, sendo um campo promissor na ciência de polimerização com estruturas controladas. Um importante requisito para engenharia de polimerização e desenvolvimento de polímeros é a construção de modelos matemáticos úteis, especialmente aqueles de natureza mecanística, com validação experimental. O objetivo deste trabalho é o desenvolvimento de modelos matemáticos abrangentes para simulação de polimerização para mecanismo RAFT. Metacrilato de metila em benzeno a 60°C na presença de 2,2-cianopropil 1- pirrolecarboditioato (agente RAFT) e com AIBN como iniciador em um reator batelada será considerado como estudo. Os pesos moleculares foram calculados utilizando o método dos momentos. Uma análise paramétrica considerando o efeito da concentração de iniciador e da concentração de agente RAFT foi realizada. O modelo predito está de acordo com os dados experimentais da literatura, o que atesta sua validade para ser utilizado no controle de estruturas poliméricas obtidas no processo RAFT / Abstract: Lately, Living Free Radical Polymerization (LFRP) has been detached as a technique for the production of polymers with highly controlled microstructure. In particular, narrow distributions of molecular weights are obtained, with polydispersity values next to one. So, this technique is a promising field in the science of polymerization with controlled structures. An important requirement for engineering of polymerization and polymer development is the construction of useful mathematical models, especially those of mechanistic nature, with experimental validation. The objective of this work was to develop comprehensive mathematical models to simulate polymerization from RAFT mechanism. Methyl Methacrylate in benzene at 60°C in the presence of 2-cyanoprop-2-yl 1-pyrrolecarbodithioate (agent RAFT) and with AIBN as the initiator in a batch reactor was considered. The molecular weights have been calculated using the method of moments. A parametric analysis considering the effect of the initiator and agent RAFT concentrations was performed. Models prediction showed good agreements with experimental data from literature, what certifies its validity in being used in the control of polymeric structures in RAFT process / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
42

Polimerização fotoiniciada e degradação foto-oxidativa de nanocompósitos de poli(metacrilato de metila)/argilas organofílicas / Photoinitiated polymerization and photo-oxidative degradation of poly(methyl methacrylate)/organo clays nanocomposites

Valandro, Silvano Rodrigo 20 February 2013 (has links)
Nanocompósitos de PMMA/ argila montmorilonita foram obtidos por fotopolimerização in situ. O metacrilato de metila foi polimerizado na presença de argilas modificadas usando Tioxantona (TX) e etil 4-(dimetilamino) benzoato (EDB) como sistema fotoiniciador. As argilas montmorilonitas SWy-1 modificadas, SWy-1-C8 e SWy-1-C16, foram preparadas pela troca de íons com brometo de octiltrimetilamônio (C8) e brometo de hexiltrimetilamônio (C16), respectivamente. A difração de raios-X indicou que os compósitos de PMMA/argila podem ter estruturas intercaladas ou esfoliadas, ou mesmo uma mistura de estruturas em camadas esfoliada e parcialmente intercalada. A estrutura de cada nanocompósito depende da concentração de argila e do solvente utilizado na preparação. A influência da concentração de argila organofílica, natureza do solvente e tipo de argila nas propriedades térmicas e mecânicas foi estudada por análise termogravimétrica e análise dinâmico-mecânica. Todos os nanocompósitos preparados em acetonitrila exibiram melhora da sua estabilidade térmica, principalmente devido à interação entre a argila e o polímero que é maximizada através da estrutura da argila esfoliada. No caso do PMMA e nanocompósitos sintetizados em etanol, a estabilidade térmica do polímero e nanocompósitos foi praticamente a mesma, uma vez que a estrutura da argila é predominantemente do tipo intercalada. Na velocidade de polimerização observou-se que os fatores que mais influenciaram foram a concentração de argila e o tipo de solvente. A argila proporciona a formação de microambientes que estabilizam o estado excitado do iniciador formando mais radicais livres e consequentemente aumentando a velocidade polimerização. A utilização da acetonitrila, a qual é um melhor solvente para o PMMA proporcionou massas molares menores. A degradação foto-oxidativa dos nanocompósitos de PMMA/ argila foi investigada utilizando cromatografia de exclusão de tamanho (SEC). Foram encontradas evidências de que o PMMA e nanocompósitos degradam por cisões aleatórias de cadeias. A polidispersidade aumentou após a irradiação e o coeficiente de degradação de PMMA puro é de até seis vezes maior do que para os nanocompósitos. O efeito sobre os coeficientes de fotodegradação da concentração de argila, tipo argila (argila modificada por agentes tensoativos com diferentes comprimentos de cadeias de alquílica) e o solvente utilizado para a dispersão de argila orgânica, também foram estudados. / Montmorillonite clay/PMMA nanocomposites were obtained by in situ photopolymerization. Methyl methacrylate was polymerized in the presence of modified clays using thioxanthone (TX) and ethyl 4-(dimethylamino) benzoate (EDB) as photoinitiating system. The SWy-1 montmorillonite modified clays, SWy-1-C8 and SWy-1-C16, were prepared by ion exchange with octyltrimethylammonium bromide (C8) and hexyltrimethylammonium bromide (C16), respectively. X-ray diffraction indicated that clay/PMMA composites have intercalated or exfoliated structures, or even a mixture of exfoliated and partially intercalated structure layers. The structure of each particular nanocomposite depends on the clay loading and the solvent used for the preparation.The influences of organoclay loading, solvent nature and clay type on thermal and mechanical properties were studied by thermogravimetric analysis and dynamic mechanical analysis. All the nanocomposites prepared in acetonitrile exhibited improvement in their thermal stability, mainly due to the interaction between the clay and the polymer which is maximized by the exfoliated clay structure. In the case of PMMA and nanocomposites synthesized in ethanol, the thermal stability of polymer and nanocomposites remained practically the same once the clay structure is predominantly of the intercalated type. It was observed that the factors that most influenced the polymerization rate were the concentration of clay and type of solvent. The clay provides the formation of microenvironments that stabilizes the excited state of the initiator forming free radicals and consequently increasing the polymerization rate. The use of acetonitrile, which is a better solvent for PMMA gave the lowest molar weight. The photooxidative degradation of clay/PMMA nanocomposites has been investigated using size exclusion chromatography (SEC). Evidence was found that PMMA and composites degrade by random chain scissions. The polydispersity increases after irradiation and the degradation rate coefficient for pure PMMA is up to 6 times larger than that for the composites. The effect on the photodegradation rate coefficients of the clay content, clay type (clay modified by surfactants with different lengths of alkyl chains) and solvent used for dispersion of organic clay were also studied. The relationship of these parameters on the photodegradation process was statistically evaluated using a two-level factorial design.
43

Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

Ezzeddine, Alaa 10 1900 (has links)
Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance the composites thermal, mechanical and electrical properties compared to pristine CNTs. Various spectroscopic and microscopic techniques such as UV-vis, fluorescence, TEM, AFM and SEM were used to study and characterize the CPE/CNT complexes. Also, TGA, DSC and DMA were used to study the thermal and mechanical properties of the composite materials. Our current work represents a fundamental study on the non-covalent interactions between CNTs and CPEs on one hand and gives a real life example on the CPE/CNT application in composite materials and electronics.
44

Evaluation of the mechanical properties of structural adhesives cured under different environmental conditions / Utvärdering av de mekaniska egenskaperna hos strukturella lim som härdas under olika miljöförhållanden

Wilhelmsson, Sebastian, Ågren, Joel January 2021 (has links)
Today, structural adhesives are found extensively in load-bearing engineering applications, as their use can be advantageous compared to other fastening methods. However, the characteristics of adhesives are far more complex, making it challenging to predict their behavior in different service conditions. In addition, environmental factors like temperature and water can affect the performance of an adhesive bond both physically and chemically. This work was initiated by MuoviTech AB and aims to evaluate the performance of structural methyl methacrylate adhesives cured in different environmental conditions. The study began with a literature review to find relevant research and literature about structural adhesives, their material characteristics, and the effects of temperature and water on the performance of adhesive bonds. A market survey was conducted to find products suitable for the experiment, and Araldite 2050, Araldite 2051, Permabond TA4200, 3M DP8810NS, LoctiteHY 4070, and Acralock SA 10-05 were selected together with MuoviTech AB. The laboratory work began with sample preparation in terms of abrasion and cleaning of the surface. The adhesives were applied to the samples, and single-lap joints were prepared and cured in room temperature and normal humidity, as well at 5 °C and underwater, for 24 hours. Single-lap shear tests were performed according to American standard ASTM D3163. Lastly, differential scanning calorimetry (DSC) was utilized for the thermal analysis of the samples cured at 5 °C and underwater. The results showed that neither of the adhesives performed in the range specified in the manufacturers’ technical data sheets (TDS). Lower failure strength and elongation was observed for the samples cured at 5 °C and underwater, compared to the samples cured in the optimal condition. However, Loctite HY 4070 showed an increase in failure strength. The DSC analysis revealed various degrees of post-curing. Further investigation with prolonged curing time and more environmental conditions are recommended. New tests for Loctite HY 4070 is also recommended to confirm the results. / Idag finns strukturella lim i stor utsträckning i bärande tekniska applikationer, eftersom deras användning kan vara fördelaktig jämfört med andra fästmetoder. Limmens egenskaper är dock mycket mer komplexa, vilket gör det svårt att förutsäga deras beteende under olika serviceförhållanden. Dessutom kan miljöfaktorer som temperatur och vatten påverka en limbindnings prestanda både fysiskt och kemiskt. Detta arbete initierades av MuoviTech AB och syftar till att utvärdera prestanda för strukturella metylmetakrylatlim härdade under olika miljöförhållanden. Studien inleddes med en litteraturöversikt för att hitta relevant forskning och litteratur om strukturella lim, deras materialegenskaper och effekterna av temperatur och vatten på limförbandens prestanda. En marknadsundersökning genomfördes för att hitta produkter som var lämpliga för experimentet, och Araldite 2050, Araldite 2051, Permabond TA4200, 3MDP8810NS, Loctite HY 4070 och Acralock SA 10-05 valdes tillsammans med MuoviTech AB. Arbetet i laboratoriet inleddes med provförberedelse genom slipning och rengöring av provens yta. Lim applicerades på proverna och förband med enkla överlapp (single-lap) bereddes och härdades i rumstemperatur och normal fuktighet, liksom vid 5 ° C och under vatten, under 24 timmar. Skjuvtester utfördes enligt den amerikanska standarden ASTM D3163. Slutligen användes differentiell svepkalorimetri (DSC) för termisk analys av proverna som härdades vid 5 ° C och under vatten. Resultaten visade att inget av limmen presterade i enlighet med det som beskrevs i tillverkarnas tekniska datablad (TDS). Däremot så observerades en lägre brottstyrka och töjning för proverna som härdades vid 5 ° C och under vatten, jämfört med de prover som härdades i det optimala tillståndet. Loctite HY 4070 visade emellertid en ökning av brottstyrka. DSC-analysen gav indikation på att olika grader av efterhärdning. Ytterligare undersökningar med längre härdningstid och med flera miljöförhållanden rekommenderas. Nya tester för Loctite HY 4070 rekommenderas också för att bekräfta resultaten.
45

The Free Radical Polymerization of Methyl Methacrylate to High Conversions

Balke, Thomas Stephen January 1972 (has links)
<p>This dissertation describes an investigation into the free radical batch polymerization of methyl methacrylate to high conversion. The overall objective was to develop a kinetic model to accurately predict conversion and molecular weight distribution for the polymerization. The dissertation is divided into three self-contained parts.</p> <p>Part I describes the development and testing of the kinetic model. New gel permeation chromatograph (GPC) data interpretation methods (developed in Part I I), the free volume concept of diffusion theory, and newly obtained isothermal kinetic data, are combined with computer implemented optimization techniques, to show that classical kinetics apply to high conversions.</p> <p>Part II details the development of three new GPC interpretation techniques. The two most recent are evaluated in Part I.</p> <p>The third has been used by other workers. Other interpretation methods are also evaluated and discussed. Part I I I describes the development of a high shear concentric cylinder viscometer and its use with Newtonian standards. This is a prelude to future studies in polymer rheology and polymerization under shear conditions.</p> / Doctor of Philosophy (PhD)
46

Sub-micron Patterning of ZnO-PMMA Hybrid Films

Gervasio, Michelle Rose 24 January 2019 (has links)
Sub-micron patterning is fundamental to the fabrication of numerous devices Traditional commercial manufacturing methods either lack the resolution needed to attain the appropriate size or are prohibitively expensive due to low throughput or the necessity of expensive equipment. Imprint lithography is a rapid, inexpensive alternative to making sub-micron features that can be tailored to work with a variety of materials. Imprint lithography, while traditionally used with pure polymers has been tailored to be used with nanoparticle-polymer hybrid films. This work has achieved high-fidelity pattern transfer onto polymer-nanoparticle hybrid films with feature sizes as small as 250 nm. The polymer-nanoparticle hybrid was fabricated by creating a liquid suspension of functionalized ZnO nanoparticles and poly(methyl methacrylate) (PMMA) in a solvent. The ZnO particles were functionalized by adding nonanoic acid in order to facilitate the dispersion of the particles in a non-polar solvent. This suspension was spread onto substrate, imprinted with a patterned stamp, allowed to dry, and was demolded. The final result was features ranging from 250 nm to 1 μm in size with good fidelity as determined by the accuracy of the feature replication and the surface roughness of the overall sample. The effect of the ZnO content as well as the method of combining the suspension components on the feature fidelity was studied. In general, it was found that feature fidelity is acceptable up to a dry-film composition of 15 vol% ZnO and that feature sizes above 500 nm were more tolerant of higher solids loading. The same imprint lithography method was also used to pattern a polymer-derived SiOC glass. The SiOC was shown to be have interesting shrinkage properties where the feature-level linear shrinkage was up to 5% more than that of the bulk. The features were shown to be stable during pyrolysis up to 1000°C and stable at operating temperatures up to 1000°C. A constant number Monte Carlo simulation was used to describe the suspension behavior to confirm the empirical results from the physical experiments. The effects of Van der Waals forces, steric stabilization, depletion flocculation, as well as the physical impediment of entangled polymer chains were considered. A similar agglomeration behavior was shown in the simulations compared to the physical experiments. This thesis shows that polymer-nanoparticle hybrid films are a compatible material for imprint lithography using appropriate suspension parameters. This is very important for a variety of applications and devices. Using imprint lithography to make these devices makes them cheaper and more accessible to the commercial market and can make a large number of theoretical devices a reality. / Ph. D. / Sub-micron patterning is an integral part of making many modern technologies such as memory storage devices or integrated circuits. As this technology becomes smaller and smaller, the limiting factor for making these devices has become the ability to manufacture effectively at the appropriate scale. Traditional commercial manufacturing methods lack the resolution needed to attain small enough features. Manufacturing methods that can make small enough features are often either extremely expensive or offer incomplete control of the feature morphology. Imprint lithography is a high-throughput, inexpensive alternative to making sub-micron features that can be tailored to work with a variety of materials. Imprint lithography is simple process in which a patterned stamp is pressed into a softened film of material in order to transfer the pattern of the stamp onto that material. Traditionally, imprint lithography works best with polymers and researchers have struggled to pattern nanoparticle-based materials. This work has achieved high-fidelity pattern transfer onto polymer-nanoparticle hybrid films with feature sizes on the same order as the polymer films found reported in literature. The polymer-nanoparticle hybrid was realized by creating a liquid suspension of functionalized ZnO nanoparticles and poly(methyl methacrylate) (PMMA) in a solvent. The ZnO particles were functionalized by adding nonanoic acid, allowing the normally polar particles to disperse in the non-polar solvent needed to dissolve the PMMA. This suspension was spread onto a glass substrate, imprinted with a patterned stamp, allowed to dry, and was demolded. The final result was the successful transfer of features ranging from 250 nm to 1 μm in size with good fidelity. The effect of the ZnO content as well as the method of combining the suspension components on the feature fidelity was studied. To help prove the broad applicability of this imprint method, it was adapted for use with polymer-derived ceramics. Additionally, a computer simulation was developed to help understand the behavior of the nanoparticle-polymer suspension during the imprint process.
47

Towards new catalytic systems for the formation of methyl methacrylate from methyl propanoate

Coetzee, Jacorien January 2011 (has links)
The two stage Lucite Alpha Process for the industrial manufacturing of methyl methacrylate (MMA) represents one of the most efficient technologies currently available for the large scale production of this important chemical commodity. The second stage of this process, which involves the condensation of methyl propanoate (MeP) with formaldehyde over a heterogeneous fixed bed catalyst, however, still shows great scope for improvement. Herein the development of a novel homogeneous catalytic system that would promote the condensation of either propanoic acid or MeP with formaldehyde is explored. Since C–C bond forming reactions which proceed via C–H activation pathways typically display high atom efficiency, our efforts were particularly focussed on employing a functionalisation strategy that is mediated by C–H activation. In the case of propanoic acid, the possibility of achieving regioselective α-methylenation by linking the substrate to phosphorus was evaluated. Thus, a series of acyloxyphosphines and acylphosphites derived from either propionic acid or phenylacetic acid was prepared and, where stability allowed, fully characterised. Some of the resultant simple mixed anhydrides posed problems relating to their stability, and the stabilisation of such ligand systems by using electronic and / or steric effects was therefore explored. In addition, the coordination chemistry and in solution behaviour of Rh(I) and Ru(II) complexes containing these ligands was examined. Similar to the free ligands, complexes derived from these mixed anhydrides rearranged in solution via a number of decomposition pathways, with the specific pathway dependent on the nature of the auxiliary ligands. For most of these complexes, however, ligand decarbonylation was the route of preference for decomposition. Despite the instability of these complexes, a selection of Rh(I) mixed anhydride complexes were assessed for their potential as C-H activation catalysts in reactions aimed at the α-methylenation of saturated carboxylic acids. Furthermore, the stabilisation of Rh(I) mixed anhydride complexes with chelating auxilary ligands, such as bisphosphines or N-substituted diphosphinoamines, was explored. In particular, a series of new Rh(I) mixed anhydride complexes containing dppe, dppb and dppbz as secondary ligands were prepared and the effects of these secondary ligands on the in solution stability of these complexes assessed. As MeP represents the final product in the first stage of the Alpha process and not propanoic acid, the utilisation of PNP iridium pincer complexes in the regioselective sp³ C–H activation of MeP and related esters was also examined. The factors that govern the regioselectivity of such reactions were of great interest to us and, in particular, the effects of water on the reactivity and regioselectivity of these reactions were explored. For MeP, preferential C–H activation of the methoxy group was found to proceed under anhydrous conditions and the catalytic functionalisation of this site with ethene using this activation approach was considered. Formaldehyde, employed in the second stage of the Alpha process, is a difficult substance to manufacture and handle, especially on a large scale. A preliminary study on the in situ production of anhydrous formaldehyde via the catalytic dehydrogenation of methanol was therefore performed. During this study, catalytic systems based on carbonate salts and / or transition metal complexes were considered. In the hope of reducing the number of steps required in the production of MMA, a new one-pot cascade reaction for the indirect α-methylenation of MeP with methanol was developed. Although the production of MMA using this system only proceeded with low efficiency, the obtained results serve as an important proof of concept for future developments in this area. Finally, the capacity of a series of simple bases to catalyse the condensation of MeP with formaldehyde was assessed as part of a fundamental study directed towards determining the factors that govern the efficiency of this reaction. In addition, the extent to which each base effects the deprotonation in the α-position of MeP was determined with the aid of deuterium labelling experiments. Similarly, using sodium propanoate as model base a rough estimate of the kinetics of deprotonation could be made based on the degree of deuterium incorporation over time. These studies suggested that the low efficiency of this condensation reaction is not caused by ineffective deprotonation but rather by the weak nucleophilicity of the generated carbanion. For this reason, attempts to increase the electrophilicity of formaldehyde through Mannich-type condensations reactions involving secondary amine and carboxylic acid additives were made.
48

"Influência da impregnação com estireno e com metacrilato de metila em propriedades físicas e mecânicas da madeira de Eucalyptus grandis e de Pinus caribaea var.hondurensis" / Influence of impregnation with styrene and methyl methacrylate on physical and mechanical properties of Eucalyptus grandis and Pinus caribaea var. hondurensis

Stolf, Denise Ortigosa 20 June 2005 (has links)
A exploração não racional dos recursos florestais nativos, no Brasil, tem provocado a redução da oferta de espécies de uso consagrado em diversos segmentos, notadamente na construção civil e na indústria de móveis. A alternativa mais imediata tem sido o emprego da madeira de reflorestamento, em particular, dos gêneros Eucalyptus e Pinus, freqüentes nas regiões sul e sudeste do país. Porém, muitas das espécies disponíveis comercialmente não apresentam propriedades fisico-mecânicas que as tornem capazes de promover a substituição das espécies tradicionalmente empregadas. Neste contexto, o presente trabalho tem como objetivo demonstrar a viabilidade de se obterem compósitos polímero-madeira (CPMs) que podem apresentar comportamento equivalente ou superior ao da madeira sem tratamento, proveniente das regiões de reflorestamento dos mencionados gêneros. Para tal, foi feita a impregnação da madeira das espécies Eucalyptus grandis e Pinus caribaea var. hondurensis por apresentarem maior disponibilidade e densidade compatível para viabilizar o processo. Empregaram-se os monômeros poliméricos de estireno e metacrilato de metila e, como iniciador no processo de polimerização, o peróxido de benzoíla. Foi utilizado o método de vácuo-pressão para a impregnação da solução monômero-iniciador. Os resultados mostraram, para os CPMs de Pinus, um significativo aumento nos valores de todas as propriedades estudadas. Nos CPMs de Eucalyptus, em decorrência de sua baixa permeabilidade, somente os valores das durezas paralela e normal às fibras apresentaram aumento. / Large exploration of native forestry resources in Brazil has led to a decrease in supply of the most widely used species in several sectors, notably in civil construction and furniture industries. The most immediate remedy has been the use of reforestation timber, obtained from the common Eucalyptus and Pinus species available in the south and southwest regions of the country. However, most of these species do not present adequate physical and mechanical properties to viably the mentioned uses. In this context, the main objective of the present research is to demonstrate the viability of obtaining wood-polymer composites (WPCs), which may exhibit similar or superior physical and mechanical properties than untreated aforementioned species from reforestation regions of Brazil. In order to achieve this goal, the impregnation of Eucalyptus grandis and Pinus caribaea var. hondurensis, which have compatible density and are available in large amounts to permit such processing, was carried out. In the process, polymeric monomers of styrene and methyl methacrylate were employed with benzyl peroxide, whose functions as an initiator in the polymerization process. Vacuum-pressure method was used in the impregnation of the monomer-initiator solution. Properties of the WPCs – Pinus were significantly improved in all tests, however, because of its low permeability, only hardness parallel and perpendicular to grain showed increase for the WPCs – Eucaliptus.
49

Développement d'une résine thermoplastique photopolymérisable dans le cadre d'une application photocomposite / Development of a photopolymerizable thermoplastic resin for a photocomposite application

Charlot, Vincent 13 November 2015 (has links)
Ce manuscrit rassemble les recherches effectuées dans le cadre du développement d’une résine thermoplastique photopolymérisable pour une application composite. Ce travail a été effectué dans le cadre du projet COMPOFAST, lancé par ARKEMA à la fin de l’année 2012. Ce projet, accompagné par l’ADEME, a pour but, la mise au point d’une nouvelle génération de composites thermoplastiques à haute cadence de production pour la conception de pièces pour l’automobile. L’intérêt de ces matériaux, et donc du projet, est l’allégement des véhicules par réduction de la masse des pièces utilisées et la recyclabilité des matrices choisies. A travers ce projet, plusieurs techniques ont été envisagées. Dans le cadre de cette thèse c’est le procédé QCM, pour Quick Composite Molding, qui a été étudié au sein du LPIM. L’utilisation de la lumière pour assurer la polymérisation de la matrice rend novateur ce procédé. Cette étape dite de photopolymérisation est connue pour être l’un des moyens les plus rapides pour former une résine solide à partir d’une formulation liquide. Le procédé repose également sur la dépose automatisée de bandes de préimprégnés sur un moule ouvert afin d’augmenter la vitesse de production des pièces de composites. Techniquement, deux étapes ont été prévues : la première consiste en la réalisation des bandes de préimprégnés de manière automatique. La deuxième étape est la conception du composite par dépose automatique sur un moule des bandes de renforts préirradiés à laquelle succède une étape finale d’irradiation pour obtenir le composite requis. / This manuscript brings together research in the development of a light-curing thermoplastic resin for a composite application. This work was performed under the COMPOFAST project launched by Arkema at the end of 2012. This project, along with the ADEME, aims at the development of a new generation of thermoplastic composites with high production rates for designing automobile parts. The advantages of these materials, and therefore of the project, is making vehicles lighter by reducing the mass of the parts used and the recyclability of the selected matrices. Through this project, several techniques were considered. As part of this thesis, it's the QCM method for Quick Composite Molding, which has been studied within the LPIM. The use of light to ensure the polymerization of the matrix makes this method innovative. This step called photopolymerization is known to be one of the fastest ways to form a solid resin from a liquid formulation. The method also relies on the automated removal prepreg bands on an open mold in order to increase the rate of production of composite parts. Technically, two stages were planned: the first involves the automatically construction of prepreg tapes. The second step is the design of the composite by automatically depositing prepregs on the mold which is followed by a final step of irradiation to give the desired photocomposite.
50

Experimental and Modelling Investigation of a Novel Tetrafunctional Initiator in Free Radical Polymerization

Scorah, Matthew January 2005 (has links)
An experimental and modelling investigation of a tetrafunctional initiator designed for free radical polymerizations is presented. Multifunctional initiators are believed to provide two advantages over traditional monofunctional initiators. With a higher number of functional sites per molecule, they are able to increase polymer production while simultaneously maintaining or increasing polymer molecular weight. Examination of the literature indicates the majority of academic and industrial published studies have investigated difunctional initiators with most focusing on styrene. In this thesis, a tetrafunctional initiator, JWEB50, was systematically investigated for a variety of monomer systems in order to develop a better understanding of the behaviour of multifunctional initiators in free radical polymerizations. <br /><br /> A kinetic study comparing the tetrafunctional initiator to a monofunctional counterpart, TBEC, demonstrated that the impact of a multifunctional initiator is dependent upon monomer type. Regardless of the homo- or copolymer system examined, it was observed that the tetrafunctional initiator could produce higher rates of polymerization due to the greater number of labile groups per initiator molecule. However, the influence of the tetrafunctional initiator on the polymer molecular weight was dictated by the polymerization characteristics of the system in question. In the case of styrene, the tetrafunctional initiator maintained similar molecular weights compared to the monofunctional initiator while for methyl methacrylate (MMA), switching from a mono- to a tetrafunctional initiator actually decreased the polymer molecular weight. Other monomers such as butyl acrylate and vinyl acetate and copolymers of MMA and styrene or alpha-methyl styrene were examined to study the effect of initiator functionality in free radical polymerizations. <br /><br /> Subsequent to the kinetic investigation, polystyrene and poly(methyl methacrylate) samples produced with the tetrafunctional initiator were characterized in detail in order to examine the effects of initiator functionality on polymer properties. Samples generated with the monofunctional initiator were used for comparison purposes. Chromatographic and dilute solution methods were able to detect significant levels of branching in the polystyrene sample produced with JWEB50, while poly(methyl methacrylate) samples showed no evidence of branching. Rheological tests involving a combination of oscillatory and creep shear measurements were completed in order to detect differences between samples. The presence of branching using rheological techniques was clearly observed for both polystyrene and poly(methyl methacrylate) samples produced with the tetrafunctional initiator. <br /><br /> In order to explain the experimental results observed in the kinetic and polymer properties studies, a reaction mechanism for polymerizations initiated with a tetrafunctional initiator was proposed and used in the development of a mathematical model. Reactions involving the fate/efficiency of functional groups are properly accounted for, while in the past this had been ignored by modelling work in the literature. Based on model predictions, di-radical concentrations were estimated to be several orders of magnitude smaller than mono-radical concentrations and their contribution in the reaction mechanism was found to be negligible. Modelling results also demonstrated that the concentration and chain length of various polymer structures (i. e. , linear, star or coupled stars) depend upon monomer type and reaction conditions.

Page generated in 0.4617 seconds