Spelling suggestions: "subject:"2metric projection"" "subject:"trimetric projection""
1 |
On the solution stability of quasivariational inequalityLee, Zhi-an 28 January 2008 (has links)
We will study the solution stability of a parametric quasi-variational inequality without the monotonicity assumption of operators. By using the degree theory and the natural map we show that under certain conditions, the solution map of the problem is lower semi-continuous with respect to parameters.
|
2 |
Détermination sous-différentielle, propriété Radon-Nikodym de faces, et structure différentielle des ensembles prox-réguliers / Subdifferential determination, Faces Radon-Nikodym property, and differential structure of prox-regular setsSalas Videla, David 14 December 2016 (has links)
Ce travail est divisé en deux parties: Dans la première partie, on présente un résultat d'intégration dans les espaces localement convexes valable pour une longe classe des fonctions non-convexes. Cela nous permet de récupérer l'enveloppe convexe fermée d'une fonction à partir du sous-différentiel convexe de cette fonction. Motivé par ce résultat, on introduit la classe des espaces ``Subdifferential Dense Primal Determined'' (SDPD). Ces espaces jouissent des conditions nécessaires permettant d'appliquer le résultat ci-dessus. On donne aussi une interprétation géométrique de ces espaces, appelée la Propriété Radon-Nikod'ym de Faces (FRNP). Dans la seconde partie, on étudie dans le contexte d'espaces d'Hilbert, la relation entre la lissité de la frontière d'un ensemble prox-régulier et la lissité de sa projection métrique. On montre que si un corps fermé possède une frontière $mathcal{C}^{p+1}$-lisse (avec $pgeq 1$), alors sa projection métrique est de classe $mathcal{C}^p$ dans le tube ouvert associé à sa fonction de prox-régularité. On établit également une version locale du même résultat reliant la lissité de la frontière autour d'un point à la prox-régularité en ce point. On étudie par ailleurs le cas où l'ensemble est lui-même une $mathcal{C}^{p+1}$-sous-variété. Finalement, on donne des réciproques de ces résultats. / This work is divided in two parts: In the first part, we present an integration result in locally convex spaces for a large class of nonconvex functions which enables us to recover the closed convex envelope of a function from its convex subdifferential. Motivated by this, we introduce the class of Subdifferential Dense Primal Determined (SDPD) spaces, which are those having the necessary condition which allows to use the above integration scheme, and we study several properties of it in the context of Banach spaces. We provide a geometric interpretation of it, called the Faces Radon-Nikod'ym property. In the second part, we study, in the context of Hilbert spaces, the relation between the smoothness of the boundary of a prox-regular set and the smoothness of its metric projection. We show that whenever a set is a closed body with a $mathcal{C}^{p+1}$-smooth boundary (with $pgeq 1$), then its metric projection is of class $mathcal{C}^{p}$ in the open tube associated to its prox-regular function. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. We also study the case when the set is itself a $mathcal{C}^{p+1}$-submanifold. Finally, we provide converses for these results.
|
3 |
Contribution à l'analyse variationnelle : stabilité des cônes tangents et normaux et convexité des ensembles de Chebyshev / Contribution to variational analysis : stability of tangent and normal cones and convexity of Chebyshev setsZakaryan, Taron 19 December 2014 (has links)
Le but de cette thèse est d'étudier les trois problèmes suivantes : 1) On s'intéresse à la stabilité des cônes normaux et des sous-différentiels via deux types de convergence d'ensembles et de fonctions : La convergence au sens de Mosco et celle d'Attouch-Wets. Les résultats obtenus peuvent être vus comme une extension du théorème d'Attouch aux fonctions non nécessairement convexes sur des espaces de Banach localement uniformément convexes. 2) Pour une bornologie β donnée sur un espace de Banach X, on étudie la validité de la formule suivante (…). Ici Tβ(C; x) et Tc(C; x) désignent le β -cône tangent et le cône tangent de Clarke à C en x. On montre que si, X x X est ∂β-« trusted » alors cette formule est valable pour tout ensemble fermé non vide C ⊂ X et x ∈ C. Cette classe d'espaces contient les espaces ayant une norme équivalent β-différentiable, etplus généralement les espaces possédant une fonction "bosse" lipschitzienne et β-différentiable). Comme conséquence, on obtient que pour la bornologie de Fréchet, cette formule caractérise les espaces d'Asplund. 3) On examine la convexité des ensembles de Chebyshev. Il est bien connu que, dans un espace normé réflexif ayant la propriété Kadec-Klee, tout ensemble de Chebyshev faiblement fermé est convexe. On démontre que la condition de faible fermeture peut être remplacée par la fermeture faible locale, c'est-à-dire pour tout x ∈ C il existe ∈ > 0 tel que C ∩ B(x, ε) est faiblement fermé. On montre aussi que la propriété Kadec-Klee n'est plus exigée lorsque l'ensemble de Chebyshev est représenté comme une union d'ensembles convexes fermés. / The aim of this thesis is to study the following three problems: 1) We are concerned with the behavior of normal cones and subdifferentials with respect to two types of convergence of sets and functions: Mosco and Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials. The results obtained can be seen as extensions of Attouch theorem to the context of non-convex functions on locally uniformly convex Banach space. 2) For a given bornology β on a Banach space X we are interested in the validity of the following "lim inf" formula (…).Here Tβ(C; x) and Tc(C; x) denote the β-tangent cone and the Clarke tangent cone to C at x. We proved that it holds true for every closed set C ⊂ X and any x ∈ C, provided that the space X x X is ∂β-trusted. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Fréchet bornology, this "lim inf" formula characterizes in fact the Asplund property of X. 3) We investigate the convexity of Chebyshev sets. It is well known that in a smooth reflexive Banach space with the Kadec-Klee property every weakly closed Chebyshev subset is convex. We prove that the condition of the weak closedness can be replaced by the local weak closedness, that is, for any x ∈ C there is ∈ > 0 such that C ∩ B(x, ε) is weakly closed. We also prove that the Kadec-Klee property is not required when the Chebyshev set is represented by a finite union of closed convex sets.
|
Page generated in 0.5265 seconds