• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 157
  • 107
  • 22
  • 16
  • 11
  • 8
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 747
  • 319
  • 246
  • 128
  • 126
  • 72
  • 64
  • 61
  • 61
  • 58
  • 54
  • 38
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Can metrology be value-based? : A case study of SKF's metrology service Mätcentrum

Berndtros, Ida, Berggren, Olivia January 2012 (has links)
Metrology is a concept that is not known by many, it is the science of measurement. For such an unknown concept it has significant importance to both the manufacturing companies and the customers as they both need to be sure that the final products are correct and of high quality. Therefore many companies have a quality system within their company to measure and calibrate their instruments. To ensure that the measuring instruments used are correct they need to be calibrated towards national and international standards. If you cannot do that at the company the service needs to be purchased externally. SKF, Svenska Kullagerfabriken AB, has a metrology service that they use for their own manufacturing that they have sold externally before and want to start selling again. The purpose of this study was to investigate what the main value drivers are in the metrology market and based on those values create a service offer. To investigate the purpose a case study of SKF’s metrology service was made and interviews were performed on nine manufacturing companies within the western region of Sweden, with focus on Gothenburg. The theoretical framework is based on the market positioning strategy by Lovelock & Wirtz (2011). The market positioning strategy includes a market section, an internal section and a competitor section. These parts can be seen all through the thesis as it guided the authors through the process. The empirical findings show the interview answers, the value drivers and the competitor response profile.   In the empirical chapter it was discovered that accreditation and accuracy are the two value drivers that the customers find most important in metrology. Those value drivers does both Mätcentrum and most of the competitors have. The empirical also show that the suppliers have a strong position in the market and can offer similar or more value than Mätcentrum. The conclusion is that it would be difficult for Mätcentrum to start selling their service externally again. This is due to the competition, mainly from existing competitors and suppliers in combination with the lack of differentiating elements in their offer. However there is still an opportunity for profitability if the communication of the values is adjusted after each customer’s need and received successfully.
212

Speckle-reduction using the bidimensional empirical mode decomposition for fringe analysis

Chen, Ting-wei 31 August 2011 (has links)
Phase-extraction from fringe patterns is an inevitable procedure in the field of optical metrology and interferometry. However, speckle noise will introduce and influence the precision of wrapped phase map when a coherent light is used. In this thesis, we use the bidimensional empirical mode decomposition (BEMD) to perform the speckle-reduction. Moreover, different interpolation method in BEMD will be used to compare their performance in speckle-reduction. Finally, the database will be developed to make the BEMD a robotic tool to reduce noises. And the database also points out that the performance of BEMD is highly related to the fringe period, the fringe visibility, and the SNR of speckle noise.
213

Inspection to 3-D deformation of a dynamic object using fringe projection techniques

Ko, Wei-Ting 18 July 2012 (has links)
A projected fringe profilometry (PFP) is a wide optical measurement technology to gauge the three dimensional appearance of object.Because of non-contact type , the short retrieve time and low environmental effect,PFP was usually used in many fields.PFP has become rather efficient and precise on gauging the three dimensional appearance of the static obiect because of its persistent development in recent years.However,it is still not mature yet to gauge the dynamic object. If we could develop a gauging way in the dynamic object , the application would be more widespread. First of all,using PFP as the gauging principle and utilzing the math algorithm for analyzing the changes between the dynamic measured object and the blurred fringes.Secondly,reconstructed the inspected object's three dimensional appearance and the velocity. Finally,found out the deformation of the measured object. The technology of this thesis broke through the typical measurement of velocity.We could analyze the velocities of three dimentional dirtions by only single optic imformation.
214

Synthesis, Characterization and Applications of Barium Strontium Titanate Thin Film Structures

Ketkar, Supriya Ashok 01 January 2013 (has links)
Barium Strontium Titanate (BST) based ferroelectric thin film devices have been popular over the last decade due to their versatile applications in tunable microwave devices such as delay lines, resonators, phase shifters, and varactors. BST thin films are promising candidates due to their high dielectric constant, tunability and low dielectric loss. Dielectric-tunable properties of BST films deposited by different deposition techniques have been reported which study the effects of factors, such as oxygen vacancies, film thickness, grain size, Ba/Sr ratio, etc. Researchers have also studied doping concentrations, high temperature annealing and multilayer structures to attain higher tunability and lower loss. The aim of this investigation was to study material properties of Barium Strontium Titanate from a comprehensive point of view to establish relations between various growth techniques and the film physical and electrical properties. The primary goal of this investigation was to synthesize and characterize RF magnetron sputtered Barium Strontium Titanate (Ba1-xSrxTiO3), thin film structures and compare their properties with BST thin films deposited by sol-gel method with the aim of determining relationships between the oxide deposition parameters, the film structure, and the electric field dependence. In order to achieve higher thickness and ease of fabrication, and faster turn around time, a `stacked' deposition process was adopted, wherein a thin film (around 200nm) of BST was first deposited by RF magnetron sputtering process followed by a sol-gel deposition process to achieve higher thickness. The investigation intends to bridge the knowledge gap associated with the dependence of thickness variation with respect to the tunability of the films. The film structures obtained using the three different deposition methods were also compared with respect to their analytical and electrical properties. The interfacial effect on these `stacked' films that enhance the properties, before and after annealing these structures was also studied. There has been significant attention given to Graphene-based supercapacitors in the last few years. Even though, supercapacitors are known to have excellent energy storage capability, they suffer from limitations pertaining to both cost and performance. Carbon (CNTs), graphene (G) and carbon-based nanocomposites, conducting polymers (polyaniline (PANI), polypyrrole (PPy), etc.) have been the fore-runners for the manufacture of supercapacitor electrodes. In an attempt to better understand the leakage behavior of Graphene Polyaniline (GPANI) electrodes, BST and BST thin films were incorporated as constituents in the process of making supercapacitor electrodes resulting in improved leakage behavior of the electrochemical cells. A detailed physical, chemical and electrochemical study of these electrochemical cells was performed. The BST thin films deposited were structurally characterized using Veeco Dektek thickness profilometer, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The interfacial structural characterization was carried out using high-resolution transmission electron microscopy (HRTEM). This investigation, also presents noncontact electrical characterization of BST films using Corona Kelvin metrology (C-KM). The `stacked' BST thin films and devices, which were electrically tested using Corona Kelvin metrology, showed marked improvement in their leakage characteristics over both, the sputtered and the sol-gel deposited counterparts. The `stacked' BST thin film samples were able to withstand voltages up to 30V positive and negative whereas, the sol-gel and sputtered samples could hold only up to a few volts without charge leaking to reduce the overall potential. High frequency, 1GHz, studies carried out on BST thin film interdigitated capacitors yielded tunability near 43%. Leakage barrier studies demonstrated improvement in the charging discharging response of the GPANI electrochemical electrodes by 40% due to the addition of BST layer.
215

Integrated performance prediction and quality control in manufacturing systems

Bleakie, Alexander Q. 10 February 2015 (has links)
Predicting the condition of a degrading dynamic system is critical for implementing successful control and designing the optimal operation and maintenance strategies throughout the lifetime of the system. In many situations, especially in manufacturing, systems experience multiple degradation cycles, failures, and maintenance events throughout their lifetimes. In such cases, historical records of sensor readings observed during the lifecycle of a machine can yield vital information about degradation patterns of the monitored machine, which can be used to formulate dynamic models for predicting its future performance. Besides the ability to predict equipment failures, another major component of cost effective and high-throughput manufacturing is tight control of product quality. Quality control is assured by taking periodic measurements of the products at various stages of production. Nevertheless, quality measurements of the product require time and are often executed on costly measurement equipment, which increases the cost of manufacturing and slows down production. One possible way to remedy this situation is to utilize the inherent link between the manufacturing equipment condition, mirrored in the readings of sensors mounted on that machine, and the quality of products coming out of it. The concept of Virtual Metrology (VM) addresses the quality control problem by using data-driven models that relate the product quality to the equipment sensors, enabling continuous estimation of the quality characteristics of the product, even when physical measurements of product quality are not available. VM can thus bring significant production benefits, including improved process control, reduced quality losses and higher productivity. In this dissertation, new methods are formulated that will combine long-term performance prediction of sensory signatures from a degrading manufacturing machine with VM quality estimation, which enables integration of predictive condition monitoring (prediction of sensory signatures) with predictive manufacturing process control (predictive VM model). The recently developed algorithm for prediction of sensory signatures is capable of predicting the system condition by comparing the similarity of the most recent performance signatures with the known degradation patterns available in the historical records. The method accomplishes the prediction of non-Gaussian and non-stationary time-series of relevant performance signatures with analytical tractability, which enables calculations of predicted signature distributions with significantly greater speeds than what can be found in literature. VM quality estimation is implemented using the recently introduced growing structure multiple model system paradigm (GSMMS), based on the use of local linear dynamic models. The concept of local models enables representation of complex, non-linear dependencies with non-Gaussian and non-stationary noise characteristics, using a locally tractable model representation. Localized modeling enables a VM that can detect situations when the VM model is not adequate and needs to be improved, which is one of the main challenges in VM. Finally, uncertainty propagation with Monte Carlo simulation is pursued in order to propagate the predicted distributions of equipment signatures through the VM model to enable prediction of distributions of the quality variables using the readily available sensor readings streaming from the monitored manufacturing machine. The newly developed methods are applied to long-term production data coming from an industrial plasma-enhanced chemical vapor deposition (PECVD) tool operating in a major semiconductor manufacturing fab. / text
216

Chemical Mechanical Planarization of Electronic Materials

Atiquzzaman, Fnu 01 January 2012 (has links)
In the modern semiconductor manufacturing processes, chemical mechanical planarization (CMP) has attained important processing step because of its ability to provide global planarization. CMP is the planarization technique which is used for the removal of excess material, as left over from the previous processing steps. In addition, CMP offers a uniform surface that is essential for subsequent processing steps, especially for the high resolution photolithography processes. In simpler notation, CMP is a process where a chemical reaction enhances in obtaining a planar surface through removal of the mechanical materials from a wafer. In this study, CMP performance of three electronic materials was investigated. Chemical vapor deposited (CVD) diamond films, as a first materials, was fabricated using hot-filament chemical vapor deposition technique (HFCVD). The synthesized microcrystalline diamond (MCD) films were characterized using Raman Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD). The CMP performance of the MCD and nanocrystalline diamond (NCD) synthesized in Nano Materials Research Laboratory (NMRL) were investigated by using commercial slurry procured by Logitech Inc. U.K. The post-CMP characterizations of diamond films were performed by AFM in order to investigate surface roughness. The result showed the significant reduction the surface roughness of MCD films (37 nm to 15 nm) and NCD films (18 nm to 12 nm). In addition, the CMP performance of the silicon dioxide was investigated in this research work. The novel nanodiamond-polymer based slurry was also developed by co-polymerization of N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide, 3-(trimethoxysilyl) propyl methacrylate (MPS). The synthesized slurry was characterized by Transmission Electron Microscopy (TEM) for observing the dispersion of diamond particles in the polymer matrix. The investigation of silicon dioxide was carried out using conventional ceria based slurry and novel nanodiamond-polymer based slurry. The results showed excellent surface finish at the minor expense of material removal rate with nanodiamond-polymer based slurry. Also, the coefficient of friction of friction was significantly reduced by using novel nanodiamond polymer based slurry. Lastly, CMP behavior of copper wafer was examined under different polishing conditions. The polishing was carried out using the commercial slurry procured from Cabot Microelectronics Inc., U.S. The copper wafers were characterized by AFM in order to analyze surface roughness. The results showed the reduction in average surface roughness occurred from 4.7 nm to 1.7 nm. This range of average surface roughness meets the demands of modern semiconductor industries.
217

Interferometer for Measuring Dynamic Corneal Topography

Micali, Jason Daniel January 2015 (has links)
The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.
218

Absolute Measurements of Large Mirrors

Su, Peng January 2008 (has links)
The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing.The Giant Magellan Telescope (GMT) has been designed with a 350 m2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface.One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms.Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.
219

Application of laser tracker technology for measuring optical surfaces

Zobrist, Tom L. January 2009 (has links)
The pages of this dissertation detail the development of an advanced metrology instrument for measuring large optical surfaces. The system is designed to accurately guide the fabrication of the Giant Magellan Telescope and future telescopes through loose-abrasive grinding. The instrument couples a commercial laser tracker with an advanced calibration technique and a set of external references to mitigate a number of error sources. The system is also required to work as a verification test for the GMT principal optical interferometric test of the polished mirror segment to corroborate the measurements in several low-order aberrations. A set of system performance goals were developed to ensure that the system will achieve these purposes. The design, analysis, calibration results, and measurement performance of the Laser Tracker Plus system are presented in this dissertation.
220

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Clark, David C. 01 January 2012 (has links)
In this dissertation we use digital holographic quantitative phase microscopy to observe and measure phase-only structures due to induced photothermal interactions and nanoscopic structures produced by photomechanical interactions. Our use of the angular spectrum method combined with off-axis digital holography allows for the successful hologram acquisition and processing necessary to view these phenomena with nanometric and, in many cases, subnanometric precision. We show through applications that this has significance in metrology of bulk fluid and interfacial properties. Our accurate quantitative phase mapping of the optically induced thermal lens in media leads to improved measurement of the absorption coefficient over existing methods. By combining a mathematical model describing the thermal lens with that describing the surface deformation effect of optical radiation pressure, we simulate the ability to temporally decouple the two phenomena. We then demonstrate this ability experimentally as well as the ability of digital holography to clearly distinguish the phase signatures of the two effects. Finally, we devise a pulsed excitation method to completely isolate the optical pressure effect from the thermal lensing effect. We then develop a noncontact purely optical approach to measuring the localized surface properties of an interface within a system using a single optical pressure pulse and a time-resolved digital holographic quantitative phase imaging technique to track a propagating nanometric capillary disturbance. We demonstrate the method's ability to accurately measure the surface energy of pure media and chemical monolayers formed by surfactants with good agreement to published values. We discuss the possible adaptation of this technique to applications for living biological cell membranes.

Page generated in 0.0406 seconds