• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 13
  • 12
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 33
  • 33
  • 26
  • 26
  • 26
  • 23
  • 18
  • 14
  • 14
  • 14
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Parameter Dependencies in an Accumulation-to-Threshold Model of Simple Perceptual Decisions

Nikitin, Vyacheslav Y. January 2015 (has links)
No description available.
32

Étude de la performance d’un algorithme Metropolis-Hastings avec ajustement directionnel

Mireuta, Matei 08 1900 (has links)
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative. / Markov Chain Monte Carlo algorithms (MCMC) have become popular tools for sampling from complex and/or high dimensional probability distributions. Given their relative ease of implementation, these methods are frequently used in various scientific areas, particularly in Statistics and Bayesian analysis. The volume of such methods has risen considerably since the first MCMC algorithm described in 1953 and this area of research remains extremely active. A new MCMC algorithm using a directional adjustment has recently been described by Bédard et al. (IJSS, 9:2008) and some of its properties remain unknown. The objective of this thesis is to attempt determining the impact of a key parameter on the global performance of the algorithm. Moreover, another aim is to compare this new method to existing MCMC algorithms in order to evaluate its performance in a relative fashion.
33

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.
34

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.
35

Étude de la performance d’un algorithme Metropolis-Hastings avec ajustement directionnel

Mireuta, Matei 08 1900 (has links)
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative. / Markov Chain Monte Carlo algorithms (MCMC) have become popular tools for sampling from complex and/or high dimensional probability distributions. Given their relative ease of implementation, these methods are frequently used in various scientific areas, particularly in Statistics and Bayesian analysis. The volume of such methods has risen considerably since the first MCMC algorithm described in 1953 and this area of research remains extremely active. A new MCMC algorithm using a directional adjustment has recently been described by Bédard et al. (IJSS, 9:2008) and some of its properties remain unknown. The objective of this thesis is to attempt determining the impact of a key parameter on the global performance of the algorithm. Moreover, another aim is to compare this new method to existing MCMC algorithms in order to evaluate its performance in a relative fashion.
36

Recyclage des candidats dans l'algorithme Metropolis à essais multiples

Groiez, Assia 03 1900 (has links)
Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît. / Markov Chain Monte Carlo (MCMC) algorithms are methods that are used for sampling from probability distributions. These tools are based on the path of a Markov chain whose stationary distribution is the distribution to be sampled. Given their relative ease of application, they are one of the most popular approaches in the statistical community, especially in Bayesian analysis. These methods are very popular for sampling from complex and/or high dimensional probability distributions. Since the appearance of the first MCMC method in 1953 (the Metropolis algorithm, see [10]), the interest for these methods, as well as the range of algorithms available, continue to increase from one year to another. Although the Metropolis-Hastings algorithm (see [8]) can be considered as one of the most general Markov chain Monte Carlo algorithms, it is also one of the easiest to understand and explain, making it an ideal algorithm for beginners. As such, it has been studied by several researchers. The multiple-try Metropolis (MTM) algorithm , proposed by [9], is considered as one interesting development in this field, but unfortunately its implementation is quite expensive (in terms of time). Recently, a new algorithm was developed by [1]. This method is named the revisited multiple-try Metropolis algorithm (MTM revisited), which is obtained by expressing the MTM method as a Metropolis-Hastings algorithm on an extended space. The objective of this work is to first present MCMC methods, and subsequently study and analyze the Metropolis-Hastings and standard MTM algorithms to allow readers a better perspective on the implementation of these methods. A second objective is to explore the opportunities and disadvantages of the revisited MTM algorithm to see if it meets the expectations of the statistical community. We finally attempt to fight the sedentarity of the revisited MTM algorithm, which leads to a new algorithm. The latter performs efficiently when the number of generated candidates in a given iteration is small, but the performance of this new algorithm then deteriorates as the number of candidates in a given iteration increases.
37

Equações simultâneas no contexto clássico e bayesiano: uma abordagem à produção de soja

VASCONCELOS, Josimar Mendes de 08 August 2011 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-07-07T12:44:03Z No. of bitstreams: 1 Josimar Mendes de Vasconcelos.pdf: 4725831 bytes, checksum: 716f4b6bc6100003772271db252915b7 (MD5) / Made available in DSpace on 2016-07-07T12:44:03Z (GMT). No. of bitstreams: 1 Josimar Mendes de Vasconcelos.pdf: 4725831 bytes, checksum: 716f4b6bc6100003772271db252915b7 (MD5) Previous issue date: 2011-08-08 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The last years has increased the quantity of researchers and search scientific in the plantation, production and value of the soybeans in the Brazil, in grain. In front of this, the present dissertation looks for to analyze the data and estimate models that explain, of satisfactory form, the variability observed of the quantity produced and value of the production of soya in grain in the Brazil, in the field of the study. For the development of these analyses is used the classical and Bayesian inference, in the context of simultaneous equations by the tools of indirect square minimum in two practices. In the classical inference uses the estimator of square minima in two practices. In the Bayesian inference worked the method of Mountain Carlo via Chain of Markov with the algorithms of Gibbs and Metropolis-Hastings by means of the technician of simultaneous equations. In the study, consider the variable area harvested, quantity produced, value of the production and gross inner product, in which it adjusted the model with the variable answer quantity produced and afterwards the another variable answer value of the production for finally do the corrections and obtain the final result, in the classical and Bayesian method. Through of the detours normalized, statistics of the proof-t, criteria of information Akaike and Schwarz normalized stands out the good application of the method of Mountain Carlo via Chain of Markov by the algorithm of Gibbs, also is an efficient method in the modelado and of easy implementation in the statistical softwares R & WinBUGS, as they already exist smart libraries to compile the method. Therefore, it suggests work the method of Mountain Carlo via chain of Markov through the method of Gibbs to estimate the production of soya in grain. / Nos últimos anos tem aumentado a quantidade de pesquisadores e pesquisas científicas na plantação, produção e valor de soja no Brasil, em grão. Diante disso, a presente dissertação busca analisar os dados e ajustar modelos que expliquem, de forma satisfatória, a variabilidade observada da quantidade produzida e valor da produção de soja em grão no Brasil, no campo do estudo. Para o desenvolvimento dessas análises é utilizada a inferência clássica e bayesiana, no contexto de equações simultâneas através da ferramenta de mínimos quadrados em dois estágios. Na inferência clássica utiliza-se o estimador de mínimos quadrados em dois estágios. Na inferência bayesiana trabalhou-se o método de Monte Carlo via Cadeia de Markov com os algoritmos de Gibbs e Metropolis-Hastings por meio da técnica de equações simultâneas. No estudo, consideram-se as variáveis área colhida, quantidade produzida, valor da produção e produto interno bruto, no qual ajustou-se o modelo com a variável resposta quantidade produzida e depois a variável resposta valor da produção para finalmente fazer as correções e obter o resultado final, no método clássico e bayesiano. Através, dos desvios padrão, estatística do teste-t, critérios de informação Akaike e Schwarz normalizados destaca-se a boa aplicação do método de Monte Carlo via Cadeia de Markov pelo algoritmo de Gibbs, também é um método eficiente na modelagem e de fácil implementação nos softwares estatísticos R & WinBUGS, pois já existem bibliotecas prontas para compilar o método. Portanto, sugere-se trabalhar o método de Monte Carlo via cadeia de Markov através do método de Gibbs para estimar a produção de soja em grão, no Brasil.
38

[en] PROBABILISTIC PORE PRESSURE PREDICTION IN RESERVOIR ROCKS THROUGH COMPRESSIONAL AND SHEAR VELOCITIES / [pt] PREVISÃO PROBABILÍSTICA DE PRESSÃO DE POROS EM ROCHAS RESERVATÓRIO ATRAVÉS DE VELOCIDADES COMPRESSIONAIS E CISALHANTES

BRUNO BROESIGKE HOLZBERG 24 March 2006 (has links)
[pt] Esta tese propõe uma metodologia de estimativa de pressão de poros em rochasreservatório através dos atributos sísmicos velocidade compressional V(p) e velocidade cisalhante V(s). Na metodologia, os atributos são encarados como observações realizadas sobre um sistema físico, cujo comportamento depende de um determinado número de grandezas não observáveis, dentre as quais a pressão de poros é apenas uma delas. Para estimar a pressão de poros, adota-se uma abordagem Bayesiana de inversão. Através de uma função de verossimilhança, estabelecida através de um modelo de física de rochas calibrável para a região, e do teorema de Bayes, combina- se as informações pré-existentes sobre os parâmetros de rocha, fluido e estado de tensões com os atributos sísmicos observados, inferindo probabilisticamente a pressão de poros. Devido a não linearidade do problema e ao interesse de se realizar uma rigorosa análise de incertezas, um algoritmo baseado em simulações de Monte Carlo (um caso especial do algoritmo de Metropolis- Hastings) é utilizado para realizar a inversão. Exemplos de aplicação da metodologia proposta são simulados em reservatórios criados sinteticamente. Através dos exemplos, demonstra-se que o sucesso da previsão de pressão de poros depende da combinação de diferentes fatores, como o grau de conhecimento prévio sobre os parâmetros de rocha e fluido, a sensibilidade da rocha perante a variação de pressões diferenciais e a qualidade dos atributos sísmicos. Visto que os métodos existentes para previsão de pressão de poros utilizam somente o atributo V(p) , a contribuição do atributo V(s) na previsão é avaliada. Em um cenário de rochas pouco consolidadas (ou em areias), demonstra-se que o atributo V(s) pode contribuir significativamente na previsão, mesmo apresentando grandes incertezas associadas. Já para um cenário de rochas consolidadas, demonstra-se que as incertezas associadas às pressões previstas são maiores, e que a contribuição do atributo V(s) na previsão não é tão significativa quanto nos casos de rochas pouco consolidadas. / [en] This work proposes a method for pore pressure prediction in reservoir rocks through compressional- and shear-velocity data (seismic attributes). In the method, the attributes are considered observations of a physic system, which behavior depends on a several not-observable parameters, where the pore pressure is only one of these parameters. To estimate the pore pressure, a Bayesian inversion approach is adopted. Through the use of a likelihood function, settled through a calibrated rock physics model, and through the Bayes theorem, the a priori information about the not-observable parameters (fluid and rock parameters and stress state) is combined with the seismic attributes, inferring probabilistically the pore pressure. Due the non-linearity of the problem, and due the uncertainties analysis demanding, an algorithm based on Monte Carlo simulations (a special case of the Metropolis- Hastings algorithm) is used to solve the inverse problem. The application of the proposed method is simulated through some synthetic examples. It is shown that a successfully pore pressure prediction in reservoir rocks depends on a set of factors, as how sensitive are the rock velocities to pore pressure changes, the a priori information about rock and fluid parameters and the uncertainties associates to the seismic attributes. Since the current methods for pore pressure prediction use exclusively the attribute compressional velocity V(p), the contribution of the attribute shear velocity V(s) on prediction is evaluated. In a poorly consolidated rock scenario (or in sands), the V(s) data, even with great uncertainties associated, can significantly contribute to a better pore pressure prediction. In a consolidated rock scenario, the uncertainties associated to pore pressure estimates are higher, and the s V data does not contribute to pore pressure prediction as it contributes in a poorly consolidated rock scenario.
39

Recyclage des candidats dans l'algorithme Metropolis à essais multiples

Groiez, Assia 03 1900 (has links)
No description available.
40

Reaction Time Modeling in Bayesian Cognitive Models of Sequential Decision-Making Using Markov Chain Monte Carlo Sampling

Jung, Maarten Lars 25 February 2021 (has links)
In this thesis, a new approach for generating reaction time predictions for Bayesian cognitive models of sequential decision-making is proposed. The method is based on a Markov chain Monte Carlo algorithm that, by utilizing prior distributions and likelihood functions of possible action sequences, generates predictions about the time needed to choose one of these sequences. The plausibility of the reaction time predictions produced by this algorithm was investigated for simple exemplary distributions as well as for prior distributions and likelihood functions of a Bayesian model of habit learning. Simulations showed that the reaction time distributions generated by the Markov chain Monte Carlo sampler exhibit key characteristics of reaction time distributions typically observed in decision-making tasks. The introduced method can be easily applied to various Bayesian models for decision-making tasks with any number of choice alternatives. It thus provides the means to derive reaction time predictions for models where this has not been possible before. / In dieser Arbeit wird ein neuer Ansatz zum Generieren von Reaktionszeitvorhersagen für bayesianische Modelle sequenzieller Entscheidungsprozesse vorgestellt. Der Ansatz basiert auf einem Markov-Chain-Monte-Carlo-Algorithmus, der anhand von gegebenen A-priori-Verteilungen und Likelihood-Funktionen von möglichen Handlungssequenzen Vorhersagen über die Dauer einer Entscheidung für eine dieser Handlungssequenzen erstellt. Die Plausibilität der mit diesem Algorithmus generierten Reaktionszeitvorhersagen wurde für einfache Beispielverteilungen sowie für A-priori-Verteilungen und Likelihood-Funktionen eines bayesianischen Modells zur Beschreibung von Gewohnheitslernen untersucht. Simulationen zeigten, dass die vom Markov-Chain-Monte-Carlo-Sampler erzeugten Reaktionszeitverteilungen charakteristische Eigenschaften von typischen Reaktionszeitverteilungen im Kontext sequenzieller Entscheidungsprozesse aufweisen. Das Verfahren lässt sich problemlos auf verschiedene bayesianische Modelle für Entscheidungsparadigmen mit beliebig vielen Handlungsalternativen anwenden und eröffnet damit die Möglichkeit, Reaktionszeitvorhersagen für Modelle abzuleiten, für die dies bislang nicht möglich war.

Page generated in 0.0631 seconds