• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification d'un modèle de comportement thermique de bâtiment à partir de sa courbe de charge

Zayane, Chadia 11 January 2011 (has links) (PDF)
Dans un contexte de préoccupation accrue d'économie d'énergie, l'intérêt que présente le développement de stratégies visant à minimiser la consommation d'un bâtiment n'est plus à démontrer. Que ces stratégies consistent à recommander l'isolation des parois, à améliorer la gestion du chauffage ou à préconiser certains comportements de l'usager, une démarche préalable d'identification du comportement thermique de bâtiment s'avère inévitable.<br/>Contrairement aux études existantes, la démarche menée ici ne nécessite pas d'instrumentation du bâtiment. De même, nous considérons des bâtiments en occupation normale, en présence de régulateur de chauffage : inconnue supplémentaire du problème. Ainsi, nous identifions un système global du bâtiment muni de son régulateur à partir de :<br/>données de la station Météo France la plus proche ; la température de consigne reconstruite par connaissance sectorielle ; la consommation de chauffage obtenue par système de Gestion Technique du Bâtiment ou par compteur intelligent ; autres apports calorifiques (éclairage, présence de personnes...) estimés par connaissance sectorielle et thermique. L'identification est d'abord faite par estimation des paramètres (7) définissant le modèle global, en minimisant l'erreur de prédiction à un pas. Ensuite nous avons adopté une démarche d'inversion bayésienne, dont le résultat est une simulation des distributions a posteriori des paramètres et de la température intérieure du bâtiment.<br/>L'analyse des simulations stochastiques obtenues vise à étudier l'apport de connaissances supplémentaires du problème (valeurs typiques des paramètres) et à démontrer les limites des hypothèses de modélisation dans certains cas.
2

Optimisation spatio-temporelle d’efforts de recherche pour cibles manoeuvrantes et intelligentes / Spatio-temporal optimisation of search efforts for smart and reactive moving targets

Chouchane, Mathieu 17 October 2013 (has links)
Dans cette thèse, nous cherchons à répondre à une problématique formulée par la DGA Techniques navales pour surveiller une zone stratégique : planifier le déploiement spatial et temporel optimal d’un ensemble de capteurs de façon à maximiser les chances de détecter une cible mobile et intelligente. La cible est dite intelligente car elle est capable de détecter sous certaines conditions les menaces que représentent les capteurs et ainsi de réagir en adaptant son comportement. Les déploiements générés pouvant aussi avoir un coût élevé nous devons tenir compte de ce critère lorsque nous résolvons notre problématique. Il est important de noter que la résolution d’un problème de ce type requiert, selon les besoins, l’application d’une méthode d’optimisation mono-objectif voire multiobjectif. Jusqu’à présent, les travaux existants n’abordent pas la question du coût des déploiements proposés. De plus la plupart d’entre eux ne se concentrent que sur un seul aspect à la fois. Enfin, pour des raisons algorithmiques, les contraintes sont généralement discrétisées.Dans une première partie, nous présentons un algorithme qui permet de déterminer le déploiement spatio-temporel de capteurs le plus efficace sans tenir compte de son coût. Cette méthode est une application à l’optimisation de la méthode multiniveau généralisée.Dans la seconde partie, nous montrons d’abord que l’utilisation de la somme pondérée des deux critères permet d’obtenir des solutions sans augmenter le temps de calcul. Pour notre seconde approche, nous nous inspirons des algorithmes évolutionnaires d’optimisation multiobjectif et adaptons la méthode multiniveau généralisée à l’optimisation multiobjectif. / In this work, we propose a solution to a problem issued by the DGA Techniques navales in order to survey a strategic area: determining the optimal spatio-temporal deployment of sensors that will maximize the detection probability of a mobile and smart target. The target is said to be smart because it is capable of detecting the threat of the sensors under certain conditions and then of adapting its behaviour to avoid it. The cost of a deployment is known to be very expensive and therefore it has to be taken into account. It is important to note that the wide spectrum of applications within this field of research also reflects the need for a highly complex theoretical framework based on stochastic mono or multi-objective optimisation. Until now, none of the existing works have dealt with the cost of the deployments. Moreover, the majority only treat one type of constraint at a time. Current works mostly rely on operational research algorithms which commonly model the constraints in both discrete space and time.In the first part, we present an algorithm which computes the most efficient spatio-temporal deployment of sensors, but without taking its cost into account. This optimisation method is based on an application of the generalised splitting method.In the second part, we first use a linear combination of the two criteria. For our second approach, we use the evolutionary multiobjective optimisation framework to adapt the generalised splitting method to multiobjective optimisation. Finally, we compare our results with the results of the NSGA-II algorithm.
3

Modèles hiérarchiques de Dirichlet à temps continu

Faires, Hafedh 03 October 2008 (has links) (PDF)
Nous étudions les processus de Dirichlet dont le paramètre est une mesure proportionnelle à la loi d'un processus temporel, par exemple un mouvement Brownien ou un processus de saut Markovien. Nous les utilisons pour proposer des modèles hiérarchiques bayésiens basés sur des équations différentielles stochastiques en milieu aléatoire. Nous proposons une méthode pour estimer les paramètres de tels modèles et nous l'illustrons sur l'équation de Black-Scholes en milieu aléatoire.
4

Vitesse de convergence de l'échantillonneur de Gibbs appliqué à des modèles de la physique statistique / The convergence rate of the Gibbs sampler for some statistical mechanics models

Helali, Amine 11 January 2019 (has links)
Les méthodes de Monte Carlo par chaines de Markov MCMC sont des outils mathématiques utilisés pour simuler des mesures de probabilités π définies sur des espaces de grandes dimensions. Une des questions les plus importantes dans ce contexte est de savoir à quelle vitesse converge la chaine de Markov P vers la mesure invariante π. Pour mesurer la vitesse de convergence de la chaine de Markov P vers sa mesure invariante π nous utilisons la distance de la variation totale. Il est bien connu que la vitesse de convergence d’une chaine de Markov réversible P dépend de la deuxième plus grande valeur propre en valeur absolue de la matrice P notée β!. Une partie importante dans l’estimation de β! consiste à estimer la deuxième plus grande valeur propre de la matrice P, qui est notée β1. Diaconis et Stroock (1991) ont introduit une méthode basée sur l’inégalité de Poincaré pour estimer β1 pour le cas général des chaines de Markov réversibles avec un nombre fini d'état. Dans cette thèse, nous utilisons la méthode de Shiu et Chen (2015) pour étudier le cas de l'algorithme de l'échantillonneur de Gibbs pour le modèle d'Ising unidimensionnel avec trois états ou plus appelé aussi modèle de Potts. Puis, nous généralisons le résultat de Shiu et Chen au cas du modèle d’Ising deux- dimensionnel avec deux états. Les résultats obtenus minorent ceux introduits par Ingrassia (1994). Puis nous avons pensé à perturber l'échantillonneur de Gibbs afin d’améliorer sa vitesse de convergence vers l'équilibre. / Monte Carlo Markov chain methods MCMC are mathematical tools used to simulate probability measures π defined on state spaces of high dimensions. The speed of convergence of this Markov chain X to its invariant state π is a natural question to study in this context.To measure the convergence rate of a Markov chain we use the total variation distance. It is well known that the convergence rate of a reversible Markov chain depends on its second largest eigenvalue in absolute value denoted by β!. An important part in the estimation of β! is the estimation of the second largest eigenvalue which is denoted by β1.Diaconis and Stroock (1991) introduced a method based on Poincaré inequality to obtain a bound for β1 for general finite state reversible Markov chains.In this thesis we use the Chen and Shiu approach to study the case of the Gibbs sampler for the 1−D Ising model with three and more states which is also called Potts model. Then, we generalize the result of Shiu and Chen (2015) to the case of the 2−D Ising model with two states.The results we obtain improve the ones obtained by Ingrassia (1994). Then, we introduce some method to disrupt the Gibbs sampler in order to improve its convergence rate to equilibrium.
5

Recyclage des candidats dans l'algorithme Metropolis à essais multiples

Groiez, Assia 03 1900 (has links)
Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît. / Markov Chain Monte Carlo (MCMC) algorithms are methods that are used for sampling from probability distributions. These tools are based on the path of a Markov chain whose stationary distribution is the distribution to be sampled. Given their relative ease of application, they are one of the most popular approaches in the statistical community, especially in Bayesian analysis. These methods are very popular for sampling from complex and/or high dimensional probability distributions. Since the appearance of the first MCMC method in 1953 (the Metropolis algorithm, see [10]), the interest for these methods, as well as the range of algorithms available, continue to increase from one year to another. Although the Metropolis-Hastings algorithm (see [8]) can be considered as one of the most general Markov chain Monte Carlo algorithms, it is also one of the easiest to understand and explain, making it an ideal algorithm for beginners. As such, it has been studied by several researchers. The multiple-try Metropolis (MTM) algorithm , proposed by [9], is considered as one interesting development in this field, but unfortunately its implementation is quite expensive (in terms of time). Recently, a new algorithm was developed by [1]. This method is named the revisited multiple-try Metropolis algorithm (MTM revisited), which is obtained by expressing the MTM method as a Metropolis-Hastings algorithm on an extended space. The objective of this work is to first present MCMC methods, and subsequently study and analyze the Metropolis-Hastings and standard MTM algorithms to allow readers a better perspective on the implementation of these methods. A second objective is to explore the opportunities and disadvantages of the revisited MTM algorithm to see if it meets the expectations of the statistical community. We finally attempt to fight the sedentarity of the revisited MTM algorithm, which leads to a new algorithm. The latter performs efficiently when the number of generated candidates in a given iteration is small, but the performance of this new algorithm then deteriorates as the number of candidates in a given iteration increases.
6

Recyclage des candidats dans l'algorithme Metropolis à essais multiples

Groiez, Assia 03 1900 (has links)
No description available.

Page generated in 0.0965 seconds