• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 11
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laser-Assisted Micromachining of Hydrogel Films for Biomedical Applications

Hongjie Jiang (5929841) 03 January 2019 (has links)
<div>Hydrogels are soft polymers comprising of a three-dimensional network capable of absorbing significant amount of water or other aqueous bio-fluids. A group of hydrogels, commonly referred to as “environmentally-sensitive hydrogels” are designed such that they can undergo reversible volume change in response to a variety of physical and chemical stimuli. Although mechanically soft, embedding organic and inorganic micro and nanoparticles into the hydrogel network increases their mechanical strength. Hydrogels have been extensively explored as scaffolding for tissue engineering or smart materials for biomedical transducers. Hydrogels in the mm-scale are typically associated with a slow response time. At micro-scale, however, they can be fast and useful as smart sensors and actuators. Several micromachining techniques have been employed to pattern thin films of hydrogel. Micro-patterning methods are based on traditional fabrication techniques such as lithography, etching, and micro-molding. These methods are time consuming, expensive, and do not scale well to large production. In addition, they have limitations as related to processing composite gels (e.g., UV light cannot penetrate through the gel and particles can mask dry etch). In this work, we outline a doctoral research aimed at alternative solution based on direct laser patterning, allowing low cost, fast, and scalable fabrication for mass production.</div><div><br></div><div><div>We characterized and analyzed a series of transient features of the laser-engineered patterns, including the ablated width, sidewall quality and resolution, as a function of laser beam parameters and hydrogel thermal & optical properties by laser-machining the hydrogels at different moisture level of hydrogels till fully dry at an interval of one hour. All the optimal patterns appear at 1-2 hours of drying (hydrogel losing 35%-65% weight), thus identifying an optimal window for a rapid end-to-end fabrication. Then, two types of composite gels were created and laser engineered, consisting of nano-iron particles embedded hydrogel (“ferrogel”) and micro-silica beads loaded hydrogel (“silicagel”); the results show comparable features similar to the bare hydrogel, confirming the processability of laser micro-machining on the composite gels. Next, we studiedthe swelling kinetics of the laser-machined hydrogels and identified tradeoffs between swelling speed and mechanical force. At the final, we used the laser patterning method to design and fabricate two pH-regulated autonomous drug delivery devices, a 3D printed smart capsule for targeted drug delivery in small intestine and a flexible patch for delivering antibiotics to infected chronic wounds. In both cases, their delivery capabilities can be tuned by either controlling the spatial resolution of the hydrogel actuator (the former) or using an n × n array (the latter).</div></div>
12

The Effects of Dilute Polymer Solutions on the Shape, Size, and Roughness of Abrasive Slurry Jet Micro-machined Channels and Holes in Brittle and Ductile Materials

Kowsari, Kavin 29 November 2013 (has links)
The present study investigated the effect of dilute polymer solutions on the size, shape, and roughness of channels and holes, machined in metal and glass using a novel abrasive slurry-jet micro-machining (ASJM) apparatus. The apparatus consisted of a slurry pump and a pulsation damper connected to an open reservoir tank to generate a 140-micron turbulent jet containing 1 wt% 10-micron alumina particles. With the addition of 50 wppm of 8-M (million) molecular weight polyethylene oxide (PEO), the widths of the channels and diameters of holes machined in glass decreased by an average amount of 25%. These changes were accompanied by approximately a 20% decrease in depth and more V-shaped profiles compared with the U-shape of the reference channels and holes machined without additives. The present results demonstrate that a small amount of a high-molecular-weight polymer can significantly decrease the size of machined channels and holes for a given jet diameter.
13

The Effects of Dilute Polymer Solutions on the Shape, Size, and Roughness of Abrasive Slurry Jet Micro-machined Channels and Holes in Brittle and Ductile Materials

Kowsari, Kavin 29 November 2013 (has links)
The present study investigated the effect of dilute polymer solutions on the size, shape, and roughness of channels and holes, machined in metal and glass using a novel abrasive slurry-jet micro-machining (ASJM) apparatus. The apparatus consisted of a slurry pump and a pulsation damper connected to an open reservoir tank to generate a 140-micron turbulent jet containing 1 wt% 10-micron alumina particles. With the addition of 50 wppm of 8-M (million) molecular weight polyethylene oxide (PEO), the widths of the channels and diameters of holes machined in glass decreased by an average amount of 25%. These changes were accompanied by approximately a 20% decrease in depth and more V-shaped profiles compared with the U-shape of the reference channels and holes machined without additives. The present results demonstrate that a small amount of a high-molecular-weight polymer can significantly decrease the size of machined channels and holes for a given jet diameter.
14

Development of micro-grinding mechanics and machine tools

Park, Hyung Wook 04 January 2008 (has links)
In this study, the new predictive model for the micro-grinding process was developed by consolidating mechanical and thermal effects within the single grit interaction model at microscale material removal. The size effect of micro-machining was also included in the proposed model. In order to assess thermal effects, the heat partition ratio was experimentally calibrated and compared with the prediction of the Hahn model. Then, on the basis of this predictive model, a comparison between experimental data and analytical predictions was conducted in view of the overall micro-grinding forces in the x and y directions. Although there are deviations in the predicted micro-grinding forces at low depths of cut, these differences are reduced as the depth of cut increases. On the other hand, the optimization of micro machine tools was performed on the basis of the proposed design strategy. Individual mathematical modeling of key parameters such as volumetric error, machine working space, and static, thermal, and dynamic stiffness were conducted and supplemented with experimental analysis using a hammer impact test. These computations yield the optimal size of miniaturized machine tools with the technical information of other parameters.
15

Design and construction of a novel reconfigurable micro manufacturing cell

Al-Sharif, Rakan January 2012 (has links)
Demands for producing small components are increasing. Such components are usually produced using large-size conventional machining tools. This results in the inadequate usage of resources, including energy, space and time. In the 1990s, the concept of a microfactory was introduced in order to achieve better usage of these resources by scaling down the size of the machine tool itself. Several industries can benefit from implementing such a concept, such as the medical, automotive and electronics industries. A novel architecture for a reconfigurable micro-manufacturing cell (RMC) is presented in this research, aiming at delivering certain manufacturing strategies such as point of use (POU) and cellular manufacturing (CM) as well as several capabilities, including modularity, reconfigurability, mobility and upgradability. Unlike conventional machine tools, the proposed design is capable of providing several machining processes within a small footprint (500 mm2), yet processing parts within a volume up to 100 mm3. In addition, it delivers a rapid structure and process reconfiguration while achieving a micromachining level of accuracy. The approach followed in developing the system is highly iterative with several feedback loops. It was deemed necessary to adopt such an approach to ensure that not only was the design relevant, but also that it progresses the state-of-the-art and takes into account the many considerations in machine design. Following this approach, several design iterations have been developed before reaching a final design that is capable of delivering the required manufacturing qualities and operational performance. A prototype has been built based on the specifications of the selected design iteration, followed by providing a detailed material and components selection process and assembly method before running a performance assessment analysis of the prototype. At this stage, a correlation between the Finite Element Analysis (FEA) model and prototype has been considered, aiming at studying the level of performance of the RMC when optimising the design in the future. Then, based on the data collected during each stage of the design process, an optimisation process was suggested to improve the overall performance of the system, using computer aided design and modelling (CAD/CAM) tools to generate, analyse and optimise the design.
16

Expérimentation et modélisation de la micro-coupe pour une application au micro-fraisage / Experimentation and modelling of micro-cutting for micro-milling application

Piquard, Romain 03 November 2016 (has links)
Les procédés de micro-fabrication connaissent actuellement une croissance importante dans les applications industrielles et pour des secteurs majeurs. Parmi les techniques d’usinage en micro-fabrication, le micro-fraisage est sans doute le plus polyvalent que ce soit en termes de matériau usiné ou de géométrie obtenue. La fabrication de micro-fraises est encore limitée par un certain nombre de paramètres (comme le rayon d’acuité d’arête) et demande alors à être optimisée. L’approche utilisée consistant à reproduire à petite échelle ce qui se fait de mieux à une échelle conventionnelle n’est alors plus forcément adaptée. Il en résulte que le micro-fraisage est un procédé encore mal maîtrisé (usure prématurée de l’outil, bris d’outil, trajectoire non maîtrisée, bavures…).L’objectif de la thèse est donc de comprendre les mécanismes mis en jeu lors de l’enlèvement de matière en micro-usinage et d’en établir un modèle permettant de prédire les efforts de coupe selon les conditions choisies et qui permettra par la suite de faciliter l’optimisation de la géométrie des outils coupantDans un premier temps, une étude expérimentale s’attache à observer la micro-coupe élémentaire d’un acier dur à l’aide de dispositifs réalisés dans le cadre de ces travaux. Un premier dispositif permet de mesurer les efforts d’usinage en micro-coupe élémentaire et un deuxième dispositif innovant permet d’étudier la formation du copeau par coupe interrompue.Par la suite, une démarche de modélisation de la micro-coupe élémentaire est proposée en complément de l’étude expérimentale. Une approche par loi de coupe basée sur les résultats des essais de micro-coupe élémentaire permet de modéliser les efforts d’usinage. En complément, des simulations numériques utilisant la méthode SPH donnent aussi des informations intéressantes sur la formation du copeau, notamment au niveau des zones de déformation.Enfin la loi de coupe associée à un modèle géométrique du micro-fraisage permet de prédire les efforts de coupe lors de l’usinage du même acier. Le modèle géométrique basé sur des travaux précédents a été complété pour prendre en compte la flexion d’outil ainsi que le faux-rond. Ce faux-rond est mesuré directement sur la machine à l’aide d’un moyen d’observation spécialement développé. Les résultats obtenus montrent une concordance entre les efforts expérimentaux et les efforts prédits. / Micro-manufacturing processes are undergoing a significant growth in industrial applications and in a number of major sectors. Among the micro-machining techniques, micro-milling is probably the most versatile both in terms of machined material and in terms geometrical achievability. However, micro-end-mill manufacturing is still limited by some parameters (such as cutting edge radius) and needs improvement. The top-down approach used to reproduce what is best from conventional scale to micro-scale is not necessarily suitable. As a result, micro-milling is still a poorly controlled process (tool wear, tool breakage, path control, burrs...).The aim of the thesis is to understand the mechanisms occurring during the material removal with micro-cutting and to propose a model to predict cutting forces according to cutting conditions, which will then make the optimization of micro-end-mills geometry easier.First, an experimental study is used to observe the elementary micro-cutting operation of a hardened tool steel using specially designed devices. A first device is used to measure cutting forces in elementary micro-cutting and a second innovative device is used to study chip formation by quick-stop tests.Then, modelling approaches of elementary micro-cutting are proposed to complete the experimental study. A cutting law approach based on the results of the elementary micro-cutting tests allows the cutting forces to be modelled. In addition, numerical simulations using the SPH method investigate chip formation and particularly deformation and shear zones.Finally, the proposed cutting law combined with a micro-milling geometric model allows the prediction of cutting forces when micro-milling the same hardened tool steel. The geometric model based on previous work has been completed to consider static tool deflection and run-out. This run-out is measured directly on the machine using a specially developed device. The results obtained show a good correlation between experimental and predicted forces.
17

A Linear Multiplexed Electrospray Thin Film Deposition System

Lojewski, Brandon 01 January 2013 (has links)
Liquid spray is essential to industries requiring processes such as spray coating, spray drying, spray pyrolysis, or spray cooling. This thesis reports the design, fabrication, and characterization of a thin film deposition system which utilizes a linear multiplexed electrospray (LINES) atomizer. First, a thorough review of the advantages and limitations of prior multiplexed electrospray systems leads to discussion of the design rationale for this work. Next, the line of charge model was extended to prescribe the operating conditions for the experiments and to estimate the spray profile. The spray profile was then simulated using a Lagrangian model and solved using a desktop supercomputer based on Graphics Processing Units (GPUs). The simulation was extended to estimate the droplet number density flux during deposition. Pure ethanol was electrosprayed in the cone-jet mode from a 51-nozzle aluminum LINES atomizer with less than 3% relative standard deviation in the D10 average droplet diameter as characterized using Phase Doppler Interferometry (PDI). Finally a 25-nozzle LINES was integrated into a thin film deposition system with a heated, motion controlled stage, to deposit TiO2 thin films onto silicon wafers from an ethanol based nanoparticle suspension. The resulting deposition pattern was analyzed using SEM, optical profilometry, and macro photography and compared with the numerical simulation results. The LINES tool developed here is a step forward to enabling the power of electrospray for industrial manufacturing applications in clean energy, health care, and electronics
18

A cost-effective process chain for thermoplastic microneedle manufacture combining laser micro-machining and micro-injection moulding

Gülçür, Mert,, Romano, J-M., Penchev, P., Gough, Timothy D., Brown, Elaine C., Dimov, S., Whiteside, Benjamin R. 08 April 2021 (has links)
Yes / High-throughput manufacturing of transdermal microneedle arrays poses a significant challenge due to the high precision and number of features that need to be produced and the requirement of multi-step processing methods for achieving challenging micro-features. To address this challenge, we report a flexible and cost-effective process chain for transdermal microneedle array manufacture that includes mould production using laser machining and replication of thermoplastic microneedles via micro-injection moulding (micromoulding). The process chain also incorporates an in-line manufacturing data monitoring capability where the variability in the quality of microneedle arrays can be determined in a production run using captured data. Optical imaging and machine vision technologies are also implemented to create a quality inspection system that allows rapid evaluation of key quality indicators. The work presents the capability of laser machining as a cost-effective method for making microneedle moulds and micro-injection moulding of thermoplastic microneedle arrays as a highly-suitable manufacturing technique for large-scale production with low marginal cost. / This research work was undertaken in the context of MICRO-MAN project (“Process Fingerprint for Zero-defect Net-shapeMICROMANufacturing”, http://www.microman.mek.dtu.dk/).MICROMAN is a European Training Network supported byHorizon 2020, the EU Framework Programme for Research andInnovation (Project ID: 674801). This research has also receivedfunding and support from two other Horizon 2020 projects:HIMALAIA (Grant agreement No. 766871) and Laser4Fun (GA no.675063).
19

Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laser

José Tort Vidal 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.
20

Desenvolvimento de um sistema opto-mecânico para micro usinagem com laser de femtosegundos / Development of an opto-mechanical system for micro machining with femtosecond laser

Vidal, José Tort 08 June 2010 (has links)
A usinagem de estruturas micrométricas pode ser feita com pulsos laser de nano, pico ou fentossegundos. Destes, porém, somente os mais curtos podem resultar em uma interação não térmica com a matéria, o que evita a fusão, formação de rebarba e zona afetada pelo calor. Devido à sua baixa potência média, contudo, a sua utilização na produção em massa somente pode ser considerada em casos muito especiais, isto é, quando o processamento não-térmico é essencial. Este é o caso da usinagem de semicondutores, aços elétricos, produção de MEMS (sistemas micro eletro-mecânicos), de micro canais e diversos dispositivos médicos e biológicos. Assim, visando a produção destes tipos de estruturas, uma estação de trabalho foi construída com capacidade de controlar os principais parâmetros de processo necessários para uma usinagem micrométrica com laser de pulsos ultracurtos. Os principais problemas deste tipo de estação são o controle da fluência e do posicionamento do ponto focal. Assim, o controle do diâmetro do feixe (no foco) e da energia devem ser feitos com grande precisão. Além disso, o posicionamento do ponto focal com precisão micrométrica nos três eixos, também é de fundamental importância. O sistema construído neste trabalho apresenta soluções para estes problemas, utilizando diversos sensores e posicionadores controlados simultaneamente por um único programa. A estação de trabalho recebe um feixe vindo de um laser de pulsos ultracurtos localizado em outro laboratório, e manipula este feixe de maneira a focalizá-lo com precisão na superfície da amostra a ser usinada. Os principais parâmetros controlados dinamicamente são a energia, o número de pulsos e o posicionamento individual de cada um deles. A distribuição espacial da intensidade, a polarização e as vibrações também foram medidas e otimizadas. O sistema foi testado e aferido com medidas de limiar de ablação do silício, que é um material bastante estudado neste regime de operação laser. Os resultados, quando confrontados com a literatura, mostram a confiabilidade e a precisão do sistema. A automatização, além de aumentar esta precisão, também aumentou a rapidez na obtenção dos resultados. Medidas de limiar de ablação também foram realizadas para o metal molibdênio, levando a resultados ainda não vistos na literatura. Assim, de acordo com o objetivo inicial, o sistema foi desenvolvido e está pronto para utilização em estudos que levem à produção de estruturas micrométricas. / Machining of very small structures has been made with nano, pico and femtosecond pulsed lasers. Among then, only femtosecond lasers may result in nonthermal interaction with matter, avoiding melting, formation of slag and heat affected zone. Mass production with such lasers yet can only be considered in cases where nonthermal effects are of prime importance. This is the case in machining of semiconductors and electric steels, the production of MEMS, microchannels, and many medical and biological devices. Hence, a workstation for production of such kind of microstructures was built with the capability of controlling the main parameters necessary for the machining process. Control of the laser fluence and focus positioning are the main concern in this kind of processing. So, the control of the laser beam diameter (in the focus) and of the pulse energy must be very precise. Positioning of focal point with micrometric precision in the three axes is also fundamental. The system built in this work provides solutions for these problems incorporating several sensors and positioning stages simultaneously controlled by a single software. The workstation receives a laser beam coming from another laboratory and delivers it to the surface of the sample managing with precision the main process parameters. The system can dynamically control the energy, number of pulses and positioning for each individual laser spot. Besides, the spatial distribution of the laser intensity, polarization and vibrations were also measured and optimized. The system was tested and calibrated with threshold ablation measurement for silicon, which is well studied in this regime of laser operation. The results where compared with data found in the literature and attested the reliability and precision of the system. Besides the increase in precision, the automation also turned much faster the data acquisition. Threshold ablation for metallic molybdenum was also obtained and resulted in data not found in the literature yet. Concluding the initial goal, the workstation was developed and is ready to be used in studies that can lead to production of micrometric structures.

Page generated in 0.0529 seconds