• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation par la méthode Lattice Boltzmann de la diffusion de chaleur et d’humidité dans des matériaux biosourcés à partir de leur morphologie 3D / Heat and moisture diffusion in bio-based materials from their 3D morphology using Lattice Boltzmann method

Louërat, Mathilde 19 January 2017 (has links)
Avec la performance thermique croissante des bâtiments, les codes de simulation utilisés en conception requièrent des données de plus en plus précises sur les matériaux de construction. De plus, l’utilisation de matériaux biosourcés qui sont hygroscopiques (leur teneur en eau s’équilibre avec l’air humide ambiant) est en pleine expansion. Leur conductivité thermique et leur diffusivité massique doivent ainsi être caractérisées précisément. Un facteur essentiel affectant ces propriétés est la microstructure des matériaux. Ce travail de thèse propose de prédire les propriétés macroscopiques d’épicéa et de panneaux de fibres de bois (matériaux hétérogènes et anisotropes) à partir de leur morphologie réelle 3D. Celle-ci est obtenue par micro-tomographie synchrotron aux rayons X, outil très performant pour caractériser la structure interne d’un matériau de façon non destructive. Un traitement d’images permet de segmenter les phases solide et gazeuse. La méthode numérique choisie pour modéliser la diffusion de chaleur et de masse est la méthode Lattice Boltzmann car elle est simple à implémenter et à paralléliser et qu’elle peut facilement traiter des morphologies complexes. Les conductivités thermiques et diffusivités massiques équivalentes sont calculées dans trois directions orthogonales pour chaque matériau. Les résultats mettent en évidence l’influence de la structure interne et la forte anisotropie des matériaux étudiés (rapport 2 entre les directions tangentielle et longitudinale du bois en thermique et 30 en massique). La conductivité thermique transversale du panneau léger est de 0,04 W m−1 K−1. / As thermal performance of buildings is increasing, the simulation codes used during design require more accurate construction material data. Moreover, the use of bio-based materials which are hygroscopic (their moisture content balances with the ambient moist air) is booming. Their thermal conductivity and mass diffusivity must therefore be accurately characterized. A key factor affecting these properties is the microstructure of the materials. This work is dedicated to the prediction of macroscopic properties of spruce and fibreboards (heterogeneous and anisotropic materials) from their real 3D morphology. This is obtained by synchrotron X-ray microtomography, a powerful and nondestructive technique to characterize the internal structure of materials. Image processing allows the segmentation of the solid and gaseous phases. To model heat and mass diffusion, we choose the Lattice Boltzmann method because of its simple numerical development, suitability for parallel computing and easy processing of complex morphologies. The equivalent thermal conductivity and mass diffusivity are calculated in three orthogonal directions for each material. The results highlight the influence of the internal structure and the strong anisotropy of the materials studied (ratio of 2 between tangential and longitudinal directions of wood for heat diffusion and of 30 for mass diffusion). The transverse thermal conductivity of the lightweight board is about 0,04 W m−1 K−1.
2

Tomographie par rayons X : correction des artefacts liés à la chaîne d'acquisition

Wils, Patricia 17 November 2011 (has links) (PDF)
L'imagerie cone-beam computed tomography (CBCT) est une méthodologie de contrôle non destructif permettant l'obtention d'images volumiques d'un objet. Le système d'acquisition se compose d'un tube à rayons X et d'un détecteur plan numérique. La recherche développée dans ce manuscrit se déroule dans le contexte industriel. L'objet est placé sur une platine de rotation et une séquence d'images 2D est acquise. Un algorithme de reconstruction procure des données volumiques de l'atténuation de l'objet. Ces informations permettent de réaliser une étude métrologique et de valider ou non la conformité de la pièce imagée. La qualité de l'image 3D est dégradée par différents artefacts inhérents à la plateforme d'acquisition. L'objectif de cette thèse est de mettre au point une méthode de correction adaptée à une plateforme de micro-tomographie par rayons X d'objets manufacturés poly-matériaux. Le premier chapitre décrit les bases de la physique et de l'algorithmie propres à la technique d'imagerie CBCT par rayons X ainsi que les différents artefacts nuisant à la qualité de l'image finale. Le travail présenté ici se concentre sur deux types d'artefacts en particulier: les rayonnements secondaires issus de l'objet et du détecteur et le durcissement de faisceau. Le second chapitre présente un état de l'art des méthodes visant à corriger le rayonnement secondaire. Afin de quantifier le rayonnement secondaire, un outil de simulation basé sur des techniques de Monte Carlo hybride est développé. Il permet de caractériser le système d'acquisition installé au laboratoire de façon réaliste. Le troisième chapitre détaille la mise en place et la validation de cet outil. Les calculs Monte Carlo étant particulièrement prohibitifs en terme de temps de calcul, des techniques d'optimisation et d'accélération sont décrites. Le comportement du détecteur est étudié avec attention et il s'avère qu'une représentation 2D suffit pour modéliser le rayonnement secondaire. Le modèle de simulation permet une reproduction fidèle des projections acquises avec le système réel. Enfin, le dernier chapitre présente la méthodologie de correction que nous proposons. Une première reconstruction bruitée de l'objet imagé est segmentée afin d'obtenir un modèle voxélisé en densités et en matériaux. L'environnement de simulation fournit alors les projections associées à ce volume. Le volume est corrigé de façon itérative. Des résultats de correction d'images tomographiques expérimentales sont présentés dans le cas d'un objet mono-matériaux et d'un objet poly-matériaux. Notre routine de correction réduit les artefacts de cupping et améliore la description du volume reconstruit.
3

Mécanismes d'endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l'humidité relative et de la microstructure induite par le moulage par injection

ARIF, Muhamad Fatikul 25 March 2014 (has links) (PDF)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile.
4

Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection / Damage mechanisms in short glass fiber reinforced polyamide-66 under monotic and fatigue loading : Effect of relative humidity and injection molding induced microstructure

Arif, Muhamad Fatikul 25 March 2014 (has links)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile. / The current work focuses on extensive experimental approaches to identify quasi-static and fatigue damage behavior of PA66/GF30 considering various effects such as relative humidity and injection process induced microstructure. By using in situ SEM tests, it was observed that relative humidity conditions strongly impact the damage mechanisms in terms of their initiation, level and chronology. The X-ray micro-tomography analysis on fatigue loaded samples demonstrated that the damage continuously increases during fatigue loading, but the evolution occurs more significantly in the second half of the fatigue life. From the results of damage investigation under quasi-static and fatigue loading, it was established that both loading types exhibit the same damage mechanisms, with fiber/matrix interfacial debonding as the principal damage mechanisms. General damage chronologies were proposed as the damage initiates at fiber ends and more generally at locations where fibers are relatively close to each other due to the generation of local stress concentrations. Afterwards, interfacial decohesions further propagate along the fiber/matrix interface. At high relative flexural stress, matrix microcracks can develop and propagate, leading to the damage accumulation and then the final failure. The experimental findings are important to provide a physically based damage mechanisms scenarios that can be integrated into multiscale damage models. These models will contribute towards reliable predictions of damage in reinforced thermoplastics for lightweight automotive applications.
5

Tomographie par rayons X : correction des artefacts liés à la chaîne d'acquisition / Artefacts correction in X-ray cone-beam computed tomography CBCT

Wils, Patricia 17 November 2011 (has links)
L'imagerie cone-beam computed tomography (CBCT) est une méthodologie de contrôle non destructif permettant l'obtention d'images volumiques d'un objet. Le système d'acquisition se compose d'un tube à rayons X et d'un détecteur plan numérique. La recherche développée dans ce manuscrit se déroule dans le contexte industriel. L'objet est placé sur une platine de rotation et une séquence d'images 2D est acquise. Un algorithme de reconstruction procure des données volumiques de l'atténuation de l'objet. Ces informations permettent de réaliser une étude métrologique et de valider ou non la conformité de la pièce imagée. La qualité de l'image 3D est dégradée par différents artefacts inhérents à la plateforme d'acquisition. L'objectif de cette thèse est de mettre au point une méthode de correction adaptée à une plateforme de micro-tomographie par rayons X d'objets manufacturés poly-matériaux. Le premier chapitre décrit les bases de la physique et de l'algorithmie propres à la technique d'imagerie CBCT par rayons X ainsi que les différents artefacts nuisant à la qualité de l'image finale. Le travail présenté ici se concentre sur deux types d'artefacts en particulier: les rayonnements secondaires issus de l'objet et du détecteur et le durcissement de faisceau. Le second chapitre présente un état de l'art des méthodes visant à corriger le rayonnement secondaire. Afin de quantifier le rayonnement secondaire, un outil de simulation basé sur des techniques de Monte Carlo hybride est développé. Il permet de caractériser le système d'acquisition installé au laboratoire de façon réaliste. Le troisième chapitre détaille la mise en place et la validation de cet outil. Les calculs Monte Carlo étant particulièrement prohibitifs en terme de temps de calcul, des techniques d'optimisation et d'accélération sont décrites. Le comportement du détecteur est étudié avec attention et il s'avère qu'une représentation 2D suffit pour modéliser le rayonnement secondaire. Le modèle de simulation permet une reproduction fidèle des projections acquises avec le système réel. Enfin, le dernier chapitre présente la méthodologie de correction que nous proposons. Une première reconstruction bruitée de l'objet imagé est segmentée afin d'obtenir un modèle voxélisé en densités et en matériaux. L'environnement de simulation fournit alors les projections associées à ce volume. Le volume est corrigé de façon itérative. Des résultats de correction d'images tomographiques expérimentales sont présentés dans le cas d'un objet mono-matériaux et d'un objet poly-matériaux. Notre routine de correction réduit les artefacts de cupping et améliore la description du volume reconstruit. / Cone-beam computed tomography (CBCT) is a standard nondestructive imaging technique related to the acquisition of three-dimensional data. This methodology interests a wide range of applications. An industrial CBCT system comprises an X-ray source and a flat-panel detector. Radiographic images are acquired during a rotation of the object of interest. A reconstruction algorithm leads to a volumic representation of the object and a post-processing routine assesses its validity. Accurate quantitative reconstruction is needed to perform an efficient diagsnotic. However, it is challenged by the presence of different artefacts coming from the acquisition itself. This thesis aims at analyzing and correcting those artefacts in a context of industrial micro-tomography. After an introduction to the physical and algorithmic background of CBCT, the artefacts are presented. Our study adresses two major artefacts: beam hardening and scatter radiations coming from the object and the detector. The second chapter reports on the state of the art in secondary radiation correction. A simulation model of the CBCT imaging chain is developed in a Monte Carlo environment. This model is designed to be realistic in order to get an accurate insight on the processes contributing to the final image formation. The third chapter focuses on the built and validation of the simulation tool. Monte Carlo methods are exact but prohibitively slow. Consequently, acceleration and optimization techniques are used to speed-up the calculations without loss of accuracy. A layer model of the flat-panel detector gives some insight on its secondary radiation behavior. More specifically, we demonstrate that a 2D description of the detector would be sufficient to compute its contribution. Our projection tool fits well with the real system. Finally, the last chapter describes our iterative correction method. The noisy initial reconstruction is segmented into different materials and densities and fed to the simulation framework. Beam hardening and secondary radiations are corrected via the volume reconstructed from the difference between acquired and simulated projections. This correction method is shown to be effective on both mono-material and poly-material objects.
6

Tracking and modelling small motions at grain scale in granular materials under compression by X-Ray microtomography and discrete simulations / Matériaux granulaires en compression quasi-statique : étude des petites déformations par microtomographie X et par simulation numérique discrète

Khalili, Mohamed Hassan 03 November 2016 (has links)
Le travail réalisé durant cette thèse a été motivé par l'étude des mécanismes microscopiques à l'origine du fluage dans les matériaux granulaires.%En particulier, on cherche à explorer des techniques expérimentales et numériques pour l'étude d'un tel phénomène.Dans une première partie, on cherche à mesurer les déplacements des grains dans un matériau granulaire par observations en micro-tomographie X. Une telle identification ne peut être efficacement réalisée pour des phénomènes rapides avec les méthodes classiques de corrélation d'images numériques. Une nouvelle méthode nommée emph{corrélation discrète des projections numériques} qui contourne cette difficulté est développée dans cette thèse. Cette méthode, basée sur la corrélation des projections de tomographie, permet de mesurer les déplacements avec un nombre réduit de projections (100 fois moins que les méthodes classiques), ce qui diminue énormément le temps d'acquisition nécessaire pour la mesure. La méthode, appliquée à des données expérimentales, donne une précision comparable à celles des méthodes classiques tandis que le temps d'acquisition nécessaire est réduit à quelques minutes. Une étude portant sur l'analyse des sources d'erreurs affectant la précision des résultats est également présentée.Le but de la deuxième partie est de réaliser des simulations numériques pour fournir une caractérisation de l'essai oedométrique. Différents assemblages de billes de verre légèrement poly-disperses interagissant à travers des contacts élastiques de Hertz-Mindlin et frottement de Coulomb ont été utilisés. Ces simulations ont permis d'étudier l'évolution de certains paramètres structuraux du matériau modèle, préparant ainsi le terrain pour de futures études sur le fluage. Il a été particulièrement souligné que les contacts élastiques utilisés dans ces simulations ne reproduisent pas l'irréversibilité des déformations observée dans les expériences sur des sables. Cependant, l'irréversibilité est bien visible sur le nombre de coordination et l'anisotropie. Alors que les paramètres élastiques peuvent exprimer la réponse pour des petits incréments de déformations, la compression oedometrique est belle et bien anélastique, principalement à cause de la mobilisation du frottement. Le rapport entre les contraintes horizontales et verticales (coefficient du sol au repos) n'est particulièrement constant que lorsque l'anisotropie de structure est instaurée dans l'état initial de l'assemblage. Il est par ailleurs relié à l'anisotropie interne de la structure par une formule simple. Finalement, les coefficients du tenseur élastique dépendent principalement du nombre de coordination et son anisotropie est plus liée à l'anisotropie des contacts qu'à celle des forces / The present work is motivated by the study of creep in granular materials at the microscopic scale.The first part of this thesis deals with displacement measurements by microtomography. Classical digital image correlation fails to catch time-dependent (possibly fast) phenomena such as short-term creep. A new method named emph{Discrete Digital Projection Correlation} is developed to overcome this limitation. This method requires very few projections (about 100 times less than classical methods) of the deformed state to perform the correlation and retrieve grain displacements. Therefore, the acquisition time is remarkably reduced, which allows to study time-dependent phenomena.The method is tested on experimental data. While its accuracy compares favorably to that of conventional methods, it only requires acquisition times of a few minutes. The origins of measurement errors are tracked by numerical means, on simulated grain displacements and rotations.The second part is a numerical simulation study, by the Discrete Element Method (DEM), of oedometric compression in model granular materials, carried out with a simple model material: assemblies of slightly polydisperse spherical beads interacting by Hertz-Mindlin contact elasticity and Coulomb friction. A wide variety of initial states are subject to compression, differing in density, coordination number and fabric anisotropy. Despite apparently almost reversible strains, oedometric compression proves an essentially anelastic and irreversible process,due to friction, with important internal state changes affecting coordination number and anisotropy. Elastic moduli only describe the response to very small stress increments about well equilibrated configurations. The ratio of horizontal stress to vertical stress (or coefficient of earth pressure at rest, commonly investigated in soil mechanics) only remains constant for initially anisotropic assemblies. A simple formula relates it to force and fabric anisotropy parameters, while elastic moduli are mainly sensitive to the latter. Further studies of contact network instabilities and rearrangements should pave the way to numerical investigations of creep behavior

Page generated in 0.0633 seconds