• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local Flow Manipulation by Rotational Motion of Magnetic Micro-Robots and Its Applications

Ye, Zhou 01 September 2014 (has links)
Magnetic micro-robots are small robots under 1mm in size, made of magnetic materials, with relatively simple structures and functionalities. Such micro-robots can be actuated and controlled remotely by externally applied magnetic fields, and hence have the potential to access small and enclosed spaces. Most of the existing magnetic micro-robots can operate in wet environments. When the robots are actuated by the applied magnetic field to move inside a viscous liquid, they invoke flow motions around them inside the liquid. The induced flows are relatively local as the velocity of these flows decays rapidly with the distance from a moving robot, and the flow patterns are highly correlated with the motions of the micro-robots which are controllable by the applied magnetic field. Therefore, it is possible to generate local flow patterns that cannot be easily done using other microfluidic techniques. In this work we propose to use rotational motion of the magnetic micro-robots for local manipulation of flows. We employ electromagnetic techniques to successfully deliver actuation and motion control onto the micro-robots. Rotational magnetic field is applied to induce rotational motion of micro-robots both when they stay near a surface and are suspended in the liquid. Rotational flows are locally generated in the vicinity of micro-robots inside the viscous liquid. Implementation of three major applications using the flows generated by the rotating micro-robots are demonstrated in this work: 1) Two-dimensional (2D) non-contact manipulation of micro-objects. 2) Three-dimensional (3D) propulsion for the micro-robot to swim in a liquid. 3) Size-based sorting of micro-particles in microfluidic channels under continuous flow. The first two applications occur in otherwise quiescent liquid, while the third requires the presence of non-zero background flow. For the first application, we propose two methods to achieve precise positioning of the microrobots on a surface: 1) Using visual-feedback-control to adjust the rotation for one single microrobot. Micro-robot can be precisely positioned at any location on a surface using this method. 2) Using a specially prepared surface with magnetic micro-docks embedded in it, which act as local magnetic traps for multiple micro-robots to hold their positions and operate in parallel. Physical models are established for both the micro-robot and the micro-objects present in the induced rotational flow. The rotational flows induced by rotating micro-robots are studied with numerical simulations. Experimental demonstrations are first given at sub-millimeter scale to verify the proposed method. Micro-manipulation of polymer beads is performed with both positioncontrol methods. Automated micro-manipulation is also achieved using visual-feedback. Micromanipulation at micron-scale is then performed to demonstrate the scalability and versatility of the proposed method. Non-contact manipulation is achieved for various micro-objects, including biological samples, using a single spherical micro-robot. Inspired by flagellated microorganisms in nature, we explore the hydrodynamics of an elastic rod-like structure - the artificial flagellum, and verify by both simulation and experiments that rotation and deformation of such structure can result in a propulsive force on a micro-robot it is attached to. Optimization of flagellum geometry is achieved for a single flagellum. A swimming micro-robot design with multiple flexible flagella is proposed and fabricated via an inexpensive micro-fabrication process involving photolithography, micro-molding and manual assembly. Experiments are perform to characterize the propulsive force generation and the resulting swimming performance of the fabricated micro-robots. It is demonstrated that the swimming speed can be improved by increasing the number of attached flagella. For the size-based sorting application, we integrate the micro-robots into microfluidic channels by using the substrate embedded with magnetic micro-docks, which are capable of holding the robots under continuous flow inside the channels while the robots spin. Numerical analysis is carried out of the flows inside the microfluidic channel in the presence of rotating micro-robots, and a physical model is established and discussed for size-based lateral migration of spherical micro-objects inside the induced rotational flows. Experimental demonstrations are performed for using the induced rotational flows to divert the trajectories of micro-particles based on their sizes under continuous flow. In addition, we propose the method of using the two photon polymerization (TPP) technique to fabricate magnetic micro-robots with complex shapes. The method could also achieve fabrication of arrays of micro-robots for more sophisticated applications. However, experimental results prove that the TPP is insufficient to achieve magnetic micro-robots that meet our needs for size-based sorting application due to physical limitations of the materials. Despite that, it is potentially powerful and suitable for fabrication of micro-robots with complex structures at small scales.
2

Design, Modelling and Testing of MEMS-based Microgripper Devices

Apuu, Solomon Terwase 21 June 2023 (has links)
Secure grasping poses a significant challenge in micro-robotics, necessitating the development of efficient gripping mechanisms. This research focuses on the design and optimization of a novel MEMS-based microgripper to address this critical issue. The primary objective is to develop a microgripper with improved performance, specifically tailored for micro-robotic applications. Utilizing the SOIMUMPS fabrication process, the microgripper features an initial gap of 82.21 µm, enabling the gripping and stiffness determination of micro-objects. It incorporates a V-shaped electrothermal actuator and an arched microbeam, serving as an in-plane displacement amplifier. The microgripper's compact size (1.75 mm X 1.92 mm) is achieved through an innovative design concept that utilizes resonance frequency shift for object detection, eliminating the need for a separate sensor. Experimental testing and simulation analysis in COMSOL Multiphysics 4.3a demonstrate the microgripper's effectiveness in achieving grasping. With an actuation voltage below 7 V, it delivers a gripping force of approximately 6 mN, ensuring reliable handling of micro-objects. The gripping stroke of 50 µm further enhances its capabilities. Furthermore, MEMS technology provides distinct advantages such as compact size, low power consumption, and integration potential with electronic devices and integrated circuits (ICs). Performance evaluation reveals excellent repeatability, thermal stability, and low power requirements, enhancing the microgripper's suitability for micro-robotic applications. The validation experiments confirm the microgripper's ability to grasp objects, exemplified by successfully gripping a gold wire. Despite limitations in achieving larger gripping strokes due to fabrication imperfections, optimization efforts have allowed the microgripper to maintain its functionality at a reduced voltage of 4.5V, resulting in a substantial 43.75% reduction in power consumption. This research advances the field of micro-robotics by providing an efficient solution for grasping and stiffness measurement. The designed MEMS-based microgripper offers improved performance, compact size, and low power consumption. These characteristics make it highly suitable for various micro-robotic applications, including micromanipulation and micro-assembly tasks. The outcomes of this work lay the foundation for further advancements in micro-robotics and hold promise for a wide range of applications in diverse fields.
3

Development of Automated Robotic Microassembly for Three-dimensional Microsystems

Wang, Lidai 03 March 2010 (has links)
Robotic microassembly is a process to leverage intelligent micro-robotic technologies to manipulate and assemble three-dimensional complex micro-electromechanical systems (MEMS) from a set of simple-functional microparts or subsystems. As the development of micro and nano-technologies has progressed in recent years, complex and highly integrated micro-devices are required. Microassembly will certainly play an important role in the fabrication of the next generation of MEMS devices. This work provides advances in robotic microassembly of complex three-dimensional MEMS devices. The following key technologies in robotic microassembly are studied in this research: (i) the design of micro-fasteners with high accuracy, high mechanical strength, and reliable electrical connection, (ii) the development of a microassembly strategy that permits the manipulation of microparts with multiple degrees of freedom (DOFs) and high accuracy, (iii) fully automated microassembly based on computer vision, (iv) micro-force sensor design for microassembly. An adhesive mechanical micro-fastener is developed to assemble micro-devices. Hybrid microassembly strategy, which consists of pick-and-place and pushing-based manipulations, is employed to assemble three-dimensional micro-devices with high flexibility and high accuracy. Novel three-dimensional rotary MEMS mirrors have been successfully assembled using the proposed micro-fastener and manipulation strategy. Fully automatic pick-and-place microassembly is successfully developed based on visual servo control. A vision-based contact sensor is developed and applied to automatic micro-joining tasks. Experimental results show that automatic microassembly has achieved sub-micron accuracy, high efficiency, and high success rate. This work has provided an effective approach to construct the next generation of MEMS devices with high performance, high efficiency, and low cost.
4

Development of Automated Robotic Microassembly for Three-dimensional Microsystems

Wang, Lidai 03 March 2010 (has links)
Robotic microassembly is a process to leverage intelligent micro-robotic technologies to manipulate and assemble three-dimensional complex micro-electromechanical systems (MEMS) from a set of simple-functional microparts or subsystems. As the development of micro and nano-technologies has progressed in recent years, complex and highly integrated micro-devices are required. Microassembly will certainly play an important role in the fabrication of the next generation of MEMS devices. This work provides advances in robotic microassembly of complex three-dimensional MEMS devices. The following key technologies in robotic microassembly are studied in this research: (i) the design of micro-fasteners with high accuracy, high mechanical strength, and reliable electrical connection, (ii) the development of a microassembly strategy that permits the manipulation of microparts with multiple degrees of freedom (DOFs) and high accuracy, (iii) fully automated microassembly based on computer vision, (iv) micro-force sensor design for microassembly. An adhesive mechanical micro-fastener is developed to assemble micro-devices. Hybrid microassembly strategy, which consists of pick-and-place and pushing-based manipulations, is employed to assemble three-dimensional micro-devices with high flexibility and high accuracy. Novel three-dimensional rotary MEMS mirrors have been successfully assembled using the proposed micro-fastener and manipulation strategy. Fully automatic pick-and-place microassembly is successfully developed based on visual servo control. A vision-based contact sensor is developed and applied to automatic micro-joining tasks. Experimental results show that automatic microassembly has achieved sub-micron accuracy, high efficiency, and high success rate. This work has provided an effective approach to construct the next generation of MEMS devices with high performance, high efficiency, and low cost.
5

Quartz probes for embedded micro-robotics and imaging / Sondes de quartz pour la micro-robotique intégrée et l'imagerie

Abrahamians Khanghah, Jean-Ochin 10 May 2016 (has links)
Les sondes basées sur des résonateurs en quartz sont des capteurs disposant d'une autonomie en termes d'excitation et d'acquisition, et à cet égard présentent de nombreux avantages par rapport aux poutres cantilever qui ont jusqu'à présent dominé dans les applications de micro-caractérisation directe. Un de ces avantages est qu'elles peuvent êtres embarquées et calibrées sans recours à un système de déflection laser. Ces outils plus compacts et autosuffisants peuvent en conséquence être aisément intégrés et contrôlés au sein d'un microscope électronique à balayage, qui permet une observation globale rapide souvent privilégiée dans la recherche en micro-robotique. Le développement de ces sondes est de plus avantagé de par le fait qu'elles sont constituées de composants électroniques standards répandus dans le commerce, et qu'elles peuvent être adaptées à des usages spécifiques par l'ajout d'une micro-pointe. Les sondes de quartz dans la littérature sont cependant souvent basées sur des composants à fréquence d'oscillation limitée, et une plus grande vitesse d'opération serait utile à l'ensemble de leurs applications. C'est dans ce contexte que nous nous intéressons à des composants à plus haute fréquence, et au contrôle de sondes dans un microscope électronique propre à leur utilisation ciblée en micro-robotique et en imagerie. Les propriétés de ces sondes sont tout d'abord examinées dans le but de pouvoir évaluer et exploiter des résonateurs à plus haute fréquence; nous montrons ensuite que des sondes basées sur des résonateurs à cisaillement d'épaisseur atteignent de plus hautes vitesses en imagerie, ce qui les rend prometteuses pour des applications rapides ne requérant pas une haute résolution. Enfin, nous intégrons une sonde diapason dans un MEB, et établissons ainsi une preuve de concept pour la cartographie en raideur de micro-membranes fragiles. / As self-sensing and self-exciting tools, quartz probes present many advantages over the heretofore dominant silicon cantilevers for mechanical micro-sensing applications. One of these advantages is that they can be embedded and calibrated without the need for a laser deflection setup. The more compact and self-sufficient tools can therefore be readily integrated and controlled with Scanning Electron Microscopy, which is favoured at the smaller scales of micro-robotic research. More generally, the development and use of quartz probes is bolstered by the fact that they can be fabricated from widely commercialized quartz components and customised through the addition of a microtip. The quartz probes found in the literature are however largely based on components with limited oscillation frequencies, and could benefit from higher operating speeds. In this context, we address the frequency improvement and embedded control of AFM probes with regard to their use in targeted micro-robotics and imaging. The properties of quartz probes are first covered towards the evaluation and use of higher frequency components; we next demonstrate that faster scanning can be achieved with quartz probes made from thickness shear resonators, making them suitable for fast applications which do not require high sensitivity. Lastly, we integrate a tuning fork probe inside a SEM, and establish through it a proof of concept for the non-destructive stiffness mapping of fragile micro-membranes.
6

Micro-Robotic Cholesteatoma Surgery : clinical requirements analysis and image-based control under constraints / Micro-Robotique pour la Chirurgie de Cholestéatome

Dahroug, Bassem 16 February 2018 (has links)
Une maladie appelée cholestéatome affecte l'oreille moyenne, en absence de traitement, elle pourrait conduire à des complications graves. Le seul traitement dans la pratique médicale actuelle est une procédure chirurgicale. Les incidences de cholestéatome résiduelle ou récurrente sont élevés et le patient doit subir plus d'une intervention chirurgicale. Par conséquent, un système robotique original a été proposé pour d'éliminer l'incidence du cholestéatome résiduel en enlevant efficacement toutes les cellules infectées de la première intervention chirurgicale, et de faire une chirurgie moins invasive. Ainsi, ce manuscrit montre les différents défis auxquels fait face le chirurgien à travers une telle micro-procédure. Il est également défini le cahier de charge pour la réalisation d'un système futuriste dédié à la chirurgie du cholestéatome. En outre, un contrôleur est proposé comme un première étape vers le système idéal. Un tel contrôleur permet de guider un outil chirurgical rigide afin de suivre un chemin de référence sous les contraintes du trou d'incision. Le contrôleur proposé peut guider soit un outil droit, soit un outil courbe. En effet, le contrôleur proposé est une commande de haut niveau qui es formulé dans l'espace de tâche (ou espace Cartésien). Ce contrôleur est une couche modulaire qui peut être ajoutée à différentes structures robotiques. Le contrôleur proposé a montré de bons résultats en termes de précision tout en étant évalué sur un robot parallèle et un robot en série. / A disease called cholesteatoma affects the middle ear, in the absence of treatment, it could lead to serious complications. The only treatment in current medical practice is a surgical procedure. Incidences of residual or recurrent cholesteatoma are high and the patient may have more than one surgical procedure. Therefore, a novel robotic system was proposed to eliminate the incidence of residual cholesteatoma by removing efficiently all infected cells from the first surgery, and make a less invasive surgery. Thus, this manuscript shows the different challenges that face the surgeon through such a micro-procedure. It also is specified the requirements for achieving a futuristic system dedicated to cholesteatoma surgery. In addition, a controller is proposed as a first step toward the ideal system. Such a controller allows to guide a rigid surgical tool for following a reference path under the constraints of the incision hole. The proposed controller can guide either a straight tool or a curved one. Indeed, the proposed controller is a high level control which is formulated in the task-space (or Cartesian-space). This controller is a modular layer which can be added to different robotics structures. The proposed controller showed a good results in term of accuracy while assessed on a parallel robot and a serial one.
7

Robust micro/nano-positioning by visual servoing / Micro et nano-positionnement robuste par l'asservissement visuel

Cui, Le 26 January 2016 (has links)
Avec le développement des nanotechnologies, il est devenu possible et souhaitable de créer et d'assembler des nano-objets. Afin d'obtenir des processus automatisés robustes et fiables, la manipulation à l'échelle nanométrique est devenue, au cours des dernières années, une tâche primordiale. La vision est un moyen indispensable pour observer le monde à l'échelle micrométrique et nanométrique. Le contrôle basé sur la vision est une solution efficace pour les problèmes de contrôle de la robotique. Dans cette thèse, nous abordons la problématique du micro- et nano-positionnement par asservissement visuel via l'utilisation d'un microscope électronique à balayage (MEB). Dans un premier temps, la formation d'image MEB et les modèles géométriques de la vision appliqués aux MEB sont étudiés afin de présenter, par la suite, une méthode d'étalonnage de MEB par l'optimisation non-linéaire considérant les modèles de projection perspective et parallèle. Dans cette étude, il est constaté qu'il est difficile d'observer l'information de profondeur à partir de la variation de la position de pixel de l'échantillon dans l'image MEB à un grossissement élevé. Afin de résoudre le problème de la non-observabilité du mouvement dans l'axe de la profondeur du MEB, les informations de défocalisation d'image sont considérées comme caractéristiques visuelles pour commander le mouvement sur cet axe. Une méthode d'asservissement visuelle hybride est alors proposée pour effectuer le micro-positionnement en 6 degrés de liberté en utilisant les informations de défocalisation d'image et de photométrique d'image. Cette méthode est ensuite validée via l'utilisation d'un robot parallèle dans un MEB. Finalement, un système de contrôle en boucle fermée pour l'autofocus du MEB est introduit et validé par des expériences. Une méthode de suivi visuel et d'estimation de pose 3D, par la mise en correspondance avec un modèle de texture, est proposée afin de réaliser le guidage visuel dans un MEB. Cette méthode est robuste au flou d'image à cause de la défocalisation provoquée par le mouvement sur l'axe de la profondeur car le niveau de défocalisation est modélisée dans ce cadre de suivi visuel. / With the development of nanotechnology, it became possible to design and assemble nano-objects. For robust and reliable automation processes, handling and manipulation tasks at the nanoscale is increasingly required over the last decade. Vision is one of the most indispensable ways to observe the world in micrioscale and nanoscale. Vision-based control is an efficient solution for control problems in robotics. In this thesis, we address the issue of micro- and nano-positioning by visual servoing in a Scanning Electron Microscope (SEM). As the fundamental knowledge, the SEM image formation and SEM vision geometry models are studied at first. A nonlinear optimization process for SEM calibration has been presented considering both perspective and parallel projection model. In this study, it is found that it is difficult to observe the depth information from the variation of the pixel position of the sample in SEM image at high magnification. In order to solve the problem that the motion along the depth direction is not observable in a SEM, the image defocus information is considered as a visual feature to control the motion along the depth direction. A hybrid visual servoing scheme has been proposed for 6-DoF micro-positioning task using both image defocus information and image photometric information. It has been validated using a parallel robot in a SEM. Based on the similar idea, a closed-loop control scheme for SEM autofocusing task has been introduced and validated by experiments. In order to achieve the visual guidance in a SEM, a template-based visual tracking and 3D pose estimation framework has been proposed. This method is robust to the defocus blur caused by the motion along the depth direction since the defocus level is modeled in the visual tracking framework.
8

High accurate 3-D photo-robotic nano-positioning for hybrid integrated optics / Nano-positionnement photo-robotique 3D de haute précision pour l'optique hybride intégrée

Bettahar, Houari 18 July 2019 (has links)
L'intégration hybride d'éléments photoniques individuels offre la promesse de fournir des performances très élevées, de proposer de nouvelles fonctionnalités et produits optiques mais aussi pour exploiter de nouveaux modes de propagation des faisceaux lumineux. Cette approche repose sur la capacité d'un positionnement multi Degré-De-Liberté (DDL) précis des éléments photoniques individuels. Ainsi, la mesure multi-DDL imprécise et le contrôle inexact des robots sont les principaux verrous à surmonter, notamment à l'échelle micrométrique Pour cela, une approche photo-robotique originale a été proposée, s'appuyant sur les mouvements d'un robot à plusieurs DDL associé à l'utilisation de l'interférométrie Fabry-Perot 1-D pour réaliser une mesure de pose multi-DOF. Cette approche intègre notamment la question de l'étalonnage des robots 6-DDL qui a été étudiée à travers l'étalonnage des paramètres géométriques extrinsèques et/ou intrinsèques. Afin de trouver la stratégie d'étalonnage appropriée pour une grande précision de positionnement et adaptée au contexte du micro-positionnement de composants optiques, une quantification et une analyse de durabilité des performances optiques et robotiques ont été étudiées. Des études expérimentales ont démontré qu'une précision de positionnement en rotation et en translation de 0.004° et 27.6 nm ont été obtenues respectivement.Cette approche photo-robotique a été notament appliquée pour réaliser le positionnement 6-DDL d'une lamelle optique par rapport à une fibre optique avec une grande précision ce qui conduit également à des performances optiques maximales. L'approche a également été appliquée pour contrôler les états de polarisation à la sortie d'un système optique hybride en réalisant des rotations très précises d'une lamelle d'onde optique spécifique autour de son axe optique. Les résultats expérimentaux démontrent notamment que la grande précision du positionnement permet un contrôle précis de l'état de polarisation optique. / The hybrid integration of individual photonic elements appears as promising, because it may provide high performances, propose new optical functionalities and products and exploit new propagation modes of light beams. This approach requires an accurate multi Degree-Of-Freedom (DOF) positioning of the individual photonic elements. Hence, the inaccurate multi-DOF measurement and robots control are the main locks to overcome, notably at the micro-scale. For this sake, an original photo-robotic approach has been proposed, relying on multi-DOF robot motion associated with the use of 1-D Fabry-Perot interferometry measure to realize multi-DOF pose measure. This approach notably integrates the issue of 6-DOF robot calibration that has been studied through extrinsic and/or intrinsic geometric parameters calibration. In order to find the appropriate calibration strategy for high positioning accuracy and adapted to the context of micro-positioning of optical components, a quantification and durability analysis of optical and robotic performances have been investigated. Experimental investigations demonstrate that a rotational and translational positioning accuracy of 0.004° and 27.6 nm have been obtained respectively.This photo-robotic approach has especially been applied to achieve the 6-DOF positioning of an optical lamella relative to an optical fiber with high accuracy that also conduct to maximum optical performances. The approach has also been applied to control the optical polarization states at the output of an hybrid optical system through achieving high accurate rotations of a specific optical wave plate around the optical axis. The experimental results notably demonstrate that the high positioning accuracy enables to accurately control of the optical polarization state.
9

QV: the quad winged, energy efficient, six degree of freedom capable micro aerial vehicle

Ratti, Jayant 21 April 2011 (has links)
The conventional Mini and Large scale Unmanned Aerial Vehicle systems span anywhere from approximately 12 inches to 12 feet; endowing them with larger propulsion systems, batteries/fuel-tanks, which in turn provide ample power reserves for long-endurance flights, powerful actuators, on-board avionics, wireless telemetry etc. The limitations thus imposed become apparent when shifting to Micro Aerial Vehicles (MAVs) and trying to equip them with equal or near-equal flight endurance, processing, sensing and communication capabilities, as their larger scale cousins. The conventional MAV as outlined by The Defense Advanced Research Projects Agency (DARPA) is a vehicle that can have a maximum dimension of 6 inches and weighs no more than 100 grams. Under these tight constraints, the footprint, weight and power reserves available to on-board avionics and actuators is drastically reduced; the flight time and payload capability of MAVs take a massive plummet in keeping with these stringent size constraints. However, the demand for micro flying robots is increasing rapidly. The applications that have emerged over the years for MAVs include search&rescue operations for trapped victims in natural disaster succumbed urban areas; search&reconnaissance in biological, radiation, natural disaster/hazard succumbed/prone areas; patrolling&securing home/office/building premises/urban areas. VTOL capable rotary and fixed wing flying vehicles do not scale down to micro sized levels, owing to the severe loss in aerodynamic efficiency associated with low Reynolds number physics on conventional airfoils; whereas, present state of the art in flapping wing designs lack in one or more of the minimum qualities required from an MAV: Appreciable flight time, appreciable payload capacity for on-board sensors/telemetry and 6DoF hovering/VTOL performance. This PhD. work is directed towards overcoming these limitations. Firstly, this PhD thesis presents the advent of a novel Quad-Wing MAV configuration (called the QV). The Four-Wing configuration is capable of performing all 6DoF flight maneuvers including VTOL. The thesis presents the design, conception, simulation study and finally hardware design/development of the MAV. Secondly, this PhD thesis proves and demonstrates significant improvement in on-board Energy-Harvesting resulting in increased flight times and payload capacities of the order of even 200%-400% and more. Thirdly, this PhD thesis defines a new actuation principle called, Fixed Frequency, Variable Amplitude (FiFVA). It is demonstrated that by the use of passive elastic members on wing joints, a further significant increase in energy efficiency and consequently reduction in input power requirements is observed. An actuation efficiency increase of over 100% in many cases is possible. The natural evolution of actuation development led to invention of two novel actuation systems to illustrate the FiFVA actuation principle and consequently show energy savings and flapping efficiency improvement. Lastly, but not in the least, the PhD thesis presents supplementary work in the design, development of two novel Micro Architecture and Control (MARC) avionics platforms (autopilots) for the application of demonstrating flight control and communication capability on-board the Four-Wing Flapping prototype. The design of a novel passive feathering mechanism aimed to improve lift/thrust performance of flapping motion is also presented.
10

Smart Sensing System for a Lateral Micro Drilling Robot

Jose Alejandro Solorio Cervantes (11191893) 28 July 2021 (has links)
The oil and gas industry faces a lack of compact drilling devices capable of performing horizontal drilling maneuvers in depleted or abandoned wells in order to enhance oil recovery. The purpose of this project was to design and develop a smart sensing system that can be later implemented in compact drilling devices used to perform horizontal drilling to enhance oil recovery in wells. A smart sensor is the combination of a sensing element (sensor) and a microprocessor. Hence, a smart sensing system is an arrangement that consists of different sensors, where one or more have smart capabilities. The sensing system was built and tested in a laboratory setting. For this, a test bench was used as a case study to simulate the operation from a micro-drilling device. The smart sensing system integrated the sensors essential for the direct operational measurements required for the robot. The focus was on selecting reliable and sturdy components that can handle the operation Down the Hole (DTH) on the final lateral micro-drilling robot. The sensing system's recorded data was sent to a microcontroller, where it was processed and then presented visually to the operator through a User Interface (UI) developed in a cloud-based framework. The information was filtered, processed, and sent to a controller that executed commands and sent signals to the test bench’s actuators. The smart sensing system included novel modules and sensors suitable for the operation in a harsh environment such as the one faced in the drilling process. Furthermore, it was designed as an independent, flexible module that can be implemented in test benches with different settings and early robotic prototypes. The outcome of this project was a sensing system able to provide robotic drilling devices with flexibility while providing accurate and reliable measurements during their operation.

Page generated in 0.434 seconds