• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 110
  • 46
  • 18
  • 13
  • 11
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 440
  • 149
  • 84
  • 65
  • 55
  • 50
  • 49
  • 45
  • 40
  • 40
  • 38
  • 38
  • 38
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electronic Engine Controller Simulation and Emulation with Ethernet Connectivity

Blackann, Joshua A. 09 August 2011 (has links)
No description available.
22

A Prototype Device for Isolating and Wirelessly Transmitting Neural Action Potentials

Slominski, Eric Christopher 31 December 2003 (has links)
An electrophysiology research laboratory at the Wake Forest University School of Medicine in the Physiology/Pharmacology Department currently carries out memory research by recording neural signals from laboratory animals with a wire tethering the animal to nearby signal conditioning and recording equipment. A wireless neural signal recording system is desirable because it removes the cumbersome wires from the animal, allowing it to roam more freely. The result is an animal that is more able to behave as it would in its natural habitat, thus opening the possibility of testing procedures that are not possible with wired recording systems. While there are wireless neural recording systems in existence, this thesis presents a new approach to recording neural signals wirelessly. The firings of neurons in the hippocampus are manifested as action potentials or voltage "spikes" on the order of 100 to 400uV in magnitude. Though the information content of the neural signal is riding on these action potentials, the spikes comprise a small fraction of the complete neural signal. A unique feature of the neural signal transceiver presented in this thesis is its ability to digitally isolate and transmit the action potentials, leaving out the remaining, unimportant part of the neural signal. This approach to recording neural signals makes efficient use of the limited bandwidth available with portable short range wireless devices. This thesis will present the spike isolating neural transmitter, which was built using commercially available electronic components. Then, the proper function of assembly language code written for a PIC18F458 microcontroller will be demonstrated. Finally, a discussion of the performance of the neural signal transmitter will be provided. / Master of Science
23

MICROCONTROLLER BASED PCM ENCODERS FOR TELEMETRY INSTRUMENTATION

Borgen, Gary 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Pulse Code Modulation (PCM) Encoders used in Telemetry Instrumentation systems have traditionally been implemented using sequencer or state-machine based micro-architectures with distributed control and signal acquisition components. This architecture requires the use of many discrete electronic components and custom micro-code programming or state machine development for the control of the systems. The advent of relatively high-speed microcontrollers with embedded signal acquisition subsystems has brought about the ability to implement highly integrated PCM Encoder systems using fewer components and standardized programming methods. This paper will discuss sequencer based PCM encoders for background and then introduce the concept of Microcontroller Based PCM Encoders for Telemetry Instrumentation. Specific design examples will be introduced. Advantages and disadvantages of the two techniques will be discussed.
24

Automotive embedded systems software reprogramming

Schmidgall, Ralf January 2012 (has links)
The exponential growth of computer power is no longer limited to stand alone computing systems but applies to all areas of commercial embedded computing systems. The ongoing rapid growth in intelligent embedded systems is visible in the commercial automotive area, where a modern car today implements up to 80 different electronic control units (ECUs) and their total memory size has been increased to several hundreds of megabyte. This growth in the commercial mass production world has led to new challenges, even within the automotive industry but also in other business areas where cost pressure is high. The need to drive cost down means that every cent spent on recurring engineering costs needs to be justified. A conflict between functional requirements (functionality, system reliability, production and manufacturing aspects etc.), testing and maintainability aspects is given. Software reprogramming, as a key issue within the automotive industry, solve that given conflict partly in the past. Software Reprogramming for in-field service and maintenance in the after sales markets provides a strong method to fix previously not identified software errors. But the increasing software sizes and therefore the increasing software reprogramming times will reduce the benefits. Especially if ECU’s software size growth faster than vehicle’s onboard infrastructure can be adjusted. The thesis result enables cost prediction of embedded systems’ software reprogramming by generating an effective and reliable model for reprogramming time for different existing and new technologies. This model and additional research results contribute to a timeline for short term, mid term and long term solutions which will solve the currently given problems as well as future challenges, especially for the automotive industry but also for all other business areas where cost pressure is high and software reprogramming is a key issue during products life cycle.
25

Design and development of a low cost heart best monitor device using finger photoplethysmography technique : circuit design and fabrication of a non-invasive heart beat monitoring device that employs reflectance and transmission mode photoplethysmography using parallel port interface and microcontroller PIC16F84A

Ramli, Nur Ilyani Binti January 2014 (has links)
A low cost Heart Beat Monitoring device (HBMD) for detecting heart beat in beats per minute is presented in this thesis. An optical technique called “Photoplethysmography” is utilized by attaching to the base of the finger for monitoring beat to beat pulsation. Two major design issues addressed in this research is to achieve a strong and accurate PPG signal and simultaneously minimizing physiological artefacts and interference. In order to achieve the aim and objectives of the research, this thesis thoroughly explores two new signal conditioning hardware designs. Firstly is the design and fabrication of a low cost reflectance mode PPG heart monitor using parallel port interfacing and secondly are the design and development of a portable transmission mode PPG heart monitor using microcontroller PIC16F84A and PIC16F87. Both PPG heart monitor design is divided into three phases. First is the detection of weak pulses through the fingertip. The PPG signal is then amplified, filtered and digitized by the signal processing unit. Finally the heart rate is calculated, analyzed and displayed on the computer using parallel port interface and on the liquid crystal display using microcontroller PIC16F87. A comprehensive circuit design and analysis work was implemented verified by Proteus VSM circuit simulations and laboratory experiments. Data is presented from the method comparison study in which heart rates measured with the reflectance mode PPG and portable transmission mode PPG heart monitor were compared with those measured with standard techniques on 13 human subjects. Benchmarking tests with approved pulse oximeter and blood pressure monitor Omron M6 reveals that the PPG heart monitor is comparable to those devices in displaying the heart rate. It is also verified through experiments that both PPG heart monitor design fulfill the objectives, including achieving strong and accurate PPG signal, reduction in physiological artefacts and interference and financially low in cost. As the conclusion, the current version of the reflectance mode PPG and portable transmission mode PPG heart monitor successfully measure heart rates fast and reliably in most subjects in different body position. The PPG heart monitor proposed avoid the need to apply electrodes or other sensors in the correct position which directly minimizes the preparation time drastically. This makes the PPG heart monitor more attractive for heart monitoring purpose and its advantage should be explored further.
26

Unidade de controle de motores de combustão interna baseada em microcontrolador e FPGA / Engine Control Unit based on Microcontroller and FPGA

Chaves, Mario Henrique 11 August 2016 (has links)
Neste trabalho são apresentados os resultados obtidos no desenvolvimento de uma unidade de controle para motores de combustão interna (UCM). A unidade foi desenvolvida com o intuito de facilitar os estudos de motores, por ser um sistema flexível e acessível. Para cálculos de rotinas de controle e acionamento de atuadores são utilizados, respectivamente, um microcontrolador e um FPGA, sendo que ambos são componentes de fácil obtenção e utilizados em placas de prototipagem encontradas no mercado (Arduino Due e Xula 2). O uso de um FPGA para executar o comando de atuadores se deve à alta velocidade de processamento, processamento paralelo e grande quantidade de portas digitais disponíveis, o que permite facilidade na expansão do sistema para comandos de múltiplos atuadores e o sincronismo desses com o sistema mecânico. O microcontrolador fica encarregado de executar as rotinas de cálculos que não exigem exato sincronismo, como rotinas de controle e comunicação com periféricos. A planta escolhida para ensaios da UCM é um motor ciclo Otto a álcool de 4 cilindros e 1.6 litros, com injeção multiponto. Ensaios foram realizados com o protótipo final e englobaram somente o controle do sistema de ignição do motor devido à facilidade de controle utilizando-se somente um parâmetro de entrada (velocidade) e devido ao controle de quantidade de combustível ser similar e utilizar as mesmas partes de código que o sistema de ignição. / In this work is presented the development of a flexible and accessible engine control unit for research purposes. For the calculations of the control routines and to drive the actuators synchronously, are used respectively, a microcontroller and an FPGA. The integrated circuits selected are easily accessible and are used in common prototyping boards found on the market (Arduino Due and Xula 2). The use of an FPGA to control the activation of the actuators is due the high speed, parallel processing and the large number of IOs, which allows the easy expansion of the system to drive more actuators, synchronized or not, with the mechanical system. The microcontroller calculates the routines that dont need an exact synchronism of the electronic system with the mechanical system, like control routines and communication tasks. The selected mechanical system for tests is a 1.6 Liter Otto engine with multipoint fuel injection and is powered with ethanol. Tests were conducted using the final board prototype only for the ignition system, because of the easy of control using a few parameters, and because ignition FPGAs code is almost the same used to drive fuel injection actuators.
27

Development of Research Platform for Unmanned Vehicle Controller Design, Evaluation, and Implementation System: From MATLAB to Hardware Based Embedded System

Ernst, Daniel 14 June 2007 (has links)
Unmanned aerial vehicles and unmanned ground vehicles, or UAVs and UGVs respectively, currently perform a large variety of missions usually centered around reconnaissance. Because the platforms may vary for a particular type of mission--everything from small unmanned airplanes and remote control vehicles to large vehicles such as the Yamaha R-MAX helicopter and Hummer--flight and navigation controllers must be changed to allow proper control of the selected platform. Currently, controllers are designed and tested in MATLAB/SIMULINK, but then rewritten in C or Assembly for a specific target platform. When designing controllers in a programming language, changes are often tedious, so producing a working controller takes considerable time. MATLAB/SIMULINK provides a GUI interface and SIMULINK provides excellent testing capabilities, so changes may be quick and easy. However, no automated method for converting a simple controller, such as a PID for example, from MATLAB to implementation on a microcontroller has been presented in literature. To implement current in-house controllers designed in MATLAB/SIMULINK, a system consisting of Real-Time Workshop and a C compiler has been used to produce assembly code for a target microcontroller. To aid in verification of the controllers and C code produced by Real-Time Workshop targeted toward aerial platforms, an interface for the controllers in SIMULINK and a flight simulator (X-Plane) has been created. Thus the overall system allows for rapid changes and implementation on a variety of platforms as well as plug-in/plug-out capabilities in the field for diverse missions. Functionality and diversity of the system is demonstrated through testing of PID VTOL controllers in SIMULINK with X-Plane as well as implementation of UGV controllers onboard a small radio controlled truck.
28

Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary

O'Brien, Robert Philip 16 March 2015 (has links)
Alzheimer's disease and other forms of dementia cause cognitive disabilities in the afflicted person. As a result, the person with dementia often requires assistance from a primary caregiver. However, while the caregiver is away from the home they are unaware of the person's status and may not be able to find out without returning to the home due to dementia's effects on cognition. In this thesis work, a system of embedded devices is presented which tracks a solitary dementia patient in the home in real-time. The system is composed of three main hardware components. Multiple passive and active sensors are strategically placed to monitor the patient. A number of custom battery-powered embedded systems read the sensors and wirelessly transmit the sensor's values. A central computational node collects the wireless transmissions and analyzes the data. Two algorithms were developed that detect the patient's eating activities and location throughout the home from the sensor data. A web-based user interface was designed that allows a primary caregiver to remotely view the patient's status while away from the home. Numerous trials are performed which test the system's ability to monitor the patient's eating activities and location. The positive results of the trials show that the proposed system is able to detect eating patterns as defined by rules and localize in real-time the patient in the home, accurate to a single quadrant of a room. The proposed embedded system is highly affordable and has two novel features, namely eating detection and patient localization accurate to a single quadrant of any room in the home. Both features use sensors installed in the home and do not require the patient to wear any sensors on their person. The state-of-the-art products currently available are able to localize only to a single room without the patient wearing sensors.
29

Alphanumeric LCD infrared control via computer’s parallel port

Jaramillo Cantu, Hector January 2006 (has links)
The present work will explain a method to achieve a remote controlled (via IR LED) alphanumeric Liquid Crystal Display. In modern times, the remote access of different devices has become quite popular, therefore, the aim of this project is to provide a useful tool that will integrate common and easy to access devices. The system includes a C language based user interface, an assembly language code for the AT89C51ED2 microcontroller instructions and some digital electronic circuits needed for the driving and control of both the LCD and the infrared communication, as well as the PC with a parallel port. The interaction of all the devices provides a whole system that can be helpful in different applications, or it can be separated into each one of its different stages to take the best advantage as possible.
30

Design and Implementation of a Microcontroller-based Axon Emulator Circuit

Chen, Jing-yuan 15 August 2012 (has links)
In recent years, there has been significant research and development in the area of advanced circuits and systems for the recording of the electroneurogram (ENG) from peripheral nerve signals. This thesis presents an emulator of peripheral nerve for the testing of bio-potential recording systems under development reducing the need for early in vitro experiments and providing reproducible results. The emulator can be configured as an artificial nerve for ENG recording, which emulates the natural behavior of a nerve and provides an interface to the circuit under test. It is representative of a real nerve in terms of impedances, electrode voltages and action potential propagation characteristics as seen when recording from a nerve cuff electrode. Its dynamic behavior is controlled by a series of linked microcontrollers. The emulator provides different user selectable scenarios including single fiber action potential (SFAP), compound action potential propagation following stimulation (CAP), naturally occurring nerve traffic, and additional interference. This emulator circuit is designed using MATLAB and Cadence Spectre to perform circuit simulation. Measured results of the emulator based on a PCB including microcontrollers (PIC series, Microchip) are reported.

Page generated in 0.0735 seconds