• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • Tagged with
  • 20
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desenvolvimento de uma centrífuga humana movida a exercício para treinamento de pilotos e pesquisas aeroespaciais

Albuquerque, Marcelo Possamai January 2012 (has links)
Made available in DSpace on 2013-08-07T18:53:07Z (GMT). No. of bitstreams: 1 000438961-Texto+Completo-0.pdf: 14871775 bytes, checksum: 8015d4a0c0c3bcafccfc35adab6874d5 (MD5) Previous issue date: 2012 / The human body is adapted to live at an approximate gravitational acceleration of 9. 81 m/s², this being equivalent to 1G. Physiological problems can occur if the body is subjected to the effects of a greater or lesser acceleration than this value. The degree of these physiological problems directly depends on the body axis affected, the intensity of acceleration and the length of time it is applied. Current equipment that can apply harmful acceleration forces includes rockets and fighter jet aircraft. Human centrifuges can be used in order to improve the resistance of the human body to this G-force, and also to develop research in this area. These devices perform a circular motion about one axis, producing an inertial reaction to the centripetal acceleration that is used to simulate G-force. Human centrifuges have been used in aerospace physiology since the middle of the 20th century. Pilot training and national research in this area are deficient in Brazil, however, as the country is lacking in this type of equipment. Thus, with this in mind, a human centrifuge was built at the Microgravity Centre/FENG PUCRS. The equipment, called the Albuquerque centrifuge, was built within a low cost budget and has good mobility in comparison to other conventional centrifuge models. The main elements of the Albuquerque centrifuge are: a base, a circular platform around the base, wheels supported on the platform, and an arm with a radius of 2. 5 m situated above these wheels. There is also a central axis that connects the base and the arm, allowing the rotational movement of the arm. A subject will be positioned in a chair at one end of the arm, whilst a system of counterweights will be used at the opposite end to balance the equipment load. The base has a pyramid format and acts as the support for the arm structure. The circular platform around the base supports the two wheels that extend down from the arm, and these serve to distribute the load on both sides on the axis. The system axes were constructed using 1045 steel and the other structures using 1020 steel. The structure of the centrifuge is able to support the weight of a volunteer up to 120 kg. The total weight of the equipment itself is estimated to be about 300 kg. The movement of the Albuquerque centrifuge is generated by means of human-powered equipment, without the use of any form of mechanical or electrical motor. This equipment comprises of two devices that simulate the pedaling of a bicycle, one being located externally to the centrifuge, and the other being fitted internally and positioned at one end of the arm. Thus, the volunteer can also perform physical exercise whilst being under the influence of simulated gravity. Having tested the system without the presence a person onboard, that is to say, using external traction only, it is concluded that the equipment is capable of achieving an acceleration close to +3Gz. / O ser humano está adaptado a viver em uma aceleração gravitacional aproximada de 9,81 m/s², sendo ela equivalente à 1G. Caso ele sofra o efeito de acelerações de valor superior ou inferior a esse valor problemas de ordem fisiológica podem ocorrer. O agravamento desses problemas fisiológicos depende diretamente do eixo corporal afetado, a intensidade das acelerações e o tempo de aplicação das mesmas. Foguetes e aviões de caça são os equipamentos atuais que mais aplicam acelerações nocivas. Assim, para treinar a resistência do corpo humano à força G e desenvolver pesquisas na área, são utilizadas centrífugas humanas. Esses equipamentos executam movimentos circulares em torno de um eixo, produzindo uma reação inercial à aceleração centrípeta que é utilizada para simular uma força G. As centrífugas humanas vêm sendo utilizadas na fisiologia aeroespacial desde a metade do século 20. Porém, treinamentos com pilotos e pesquisas nacionais nessa área são deficitários no Brasil, uma vez que o país não possui esse tipo de equipamento. Então, para suprir essa necessidade, uma centrífuga humana foi construída no Centro de Microgravidade/FENG da PUCRS.O equipamento foi denominado Centrífuga Albuquerque e foi construído dentro de um orçamento de baixo custo, possuindo boa mobilidade comparada a outros modelos convencionais de centrífugas. Os elementos principais da Centrífuga Albuquerque são: uma Base, um disco ao redor da Base, rodas sobre o disco e um Braço sobre estas rodas, de raio 2,5 m Existe também um eixo central que interliga a Base e o Braço, de forma a permitir o movimento rotatório do Braço. Em um dos lados do Braço o voluntário ficará alocado em uma cadeira e, no outro lado, ficará um sistema de contrapesos para equilibrar as cargas do equipamento. A Base tem formato piramidal e serve para sustentar a estrutura do Braço. Ao redor da Base, encontra-se o disco, sobre o qual estão as duas rodas presentes no Braço, que servem para distribuir as cargas de ambos os lados sobre o eixo. Os eixos do sistema foram construídos em Aço 1045 e as demais estruturas em Aço 1020. A estrutura da centrífuga é capaz de suportar voluntários com pesos de 120 kg. O peso total do equipamento é calculado em aproximadamente 300 kg.O movimento da Centrífuga Albuquerque é gerado através de um equipamento de tração humana, sem a utilização de nenhum tipo de motor mecânico ou elétrico. Esse equipamento é composto por dois dispositivos que simulam as pedaladas de uma bicicleta, sendo um deles localizado externamente à centrífuga e o outro em seu interior, posicionado junto à extremidade de um dos 7 lados. Assim, o voluntário que estará sob o efeito de uma gravidade simuladatambém realizará exercícios físicos. Após testes de funcionamento do sistema, sem a presença de seres humanos em seu interior, isto é, utilizando apenas a tração externa, conclui-se que o equipamento é capaz de alcançar acelerações próximas à +3 Gz.
12

Aperfeiçoamento e validação do clinostato 3D e seu uso no estudo de células do sistema imune humano

Martinelli, Leonardo Krás Borges January 2007 (has links)
Made available in DSpace on 2013-08-07T18:53:10Z (GMT). No. of bitstreams: 1 000394809-Texto+Completo-0.pdf: 1360932 bytes, checksum: 45e91ad1f071e04247b153dcbb6a6629 (MD5) Previous issue date: 2007 / Exposure to microgravity produces changes in the immunological system at cellular level, as well as in the major physiological systems of the body. Weightlessness suppresses lymphocytic functions involved in the immunity process, such as cell locomotion and expression of antigen. The present study aimed at improving the third prototype of the Microgravity Center/PUCRS 3D-Clinostat, a device used to simulate microgravity environment on Earth, by adding to it electronic components, such as a microcontroller, a rotating speed sensor, temperature and humidity sensors and a Radio Frequency transceiver. These were intended to simplify the operation and increase the performance of the device. The present study also aimed to validate this new version of the 3D-Clinostat by investigating whether the proliferation and viability of lymphocytes are reduced by exposure to rotation, used to simulate microgravity for cells. The third objective of this study was to evaluate the growth of K562 tumor cells in simulated microgravity. The results demonstrated that the electronic components added to the Clinostat improved its performance. The validation study indicated a non-significant change in the proliferation and cellular viability to the mitogen stimulation in 24h of simulated weightlessness (p=0. 146). There was, however, a significant decrease (p= 0. 012) in proliferation and viability after 48h rotation in the 3D-Clinostat with is in accordance with the current scientific literature. A comparison between 24h and 48h of clinorotation indicated a difference between the results (p=0. 003).These findings validated the Microgravity Center 3D-Clinostat as a tool capable of simulating weightlessness on Earth. The results also suggested that the immunological depression associated with spaceflight is not just related to the psychological and physical stresses that the astronaut experiences to during a space mission, but it seems to it also be caused by microgravity per se, which affects the proliferation and cellular viability of immune cells. The results of the experiment with K562 cells showed an increase in their growth (p=0. 007) during microgravity simulation in relation to control values. Future studies have to be done to better clarify the effects of microgravity on tumor immunology. / A exposição à microgravidade acarreta alterações na atividade do sistema imunológico a nível celular, bem como na maioria dos sistemas fisiológicos do organismo. O ambiente desprovido de força gravitacional inibe funções linfocitárias envolvidas no processo de defesa imune do corpo humano, como locomoção celular e expressão de antígenos. O clinostato é uma das ferramentas utilizadas para simular microgravidade na Terra e estudar os seus efeitos em diversas funções fisiológicas do corpo humano. O presente estudo visou aperfeiçoar o terceiro protótipo do Clinostato 3D do Centro de Microgravidade/PUCRS, através da adição de componentes eletrônicos, como, por exemplo, microcontrolador, sensor de velocidade rotacional, sensor de temperatura e umidade e transceiver Rádio Freqüência, a fim de aumentar o seu desempenho e simplificar a sua operação. Este estudo também objetivou validar a nova versão do Clinostato 3D. Para tanto, realizou-se um estudo referente a processos imunológicos, o qual incluiu uma avaliação dos efeitos da microgravidade simulada sobre a proliferação e viabilidade de linfócitos T humanos em estimulação ao mitógeno fitohemaglutinina. O terceiro objetivo deste trabalho foi o de estudar o crescimento de células cancerígenas, utilizando-se o Clinostato 3D do Centro de Microgravidade como simulador de microgravidade. Os resultados do aperfeiçoamento do clinostato mostraram que os componentes eletrônicos implementados aumentaram o desempenho do Clinostato 3D e facilitaram a sua operação. No estudo de validação, não houve decréscimo na proliferação e viabilidade celular em 24h de simulação de microgravidade (p=0,146). Entretanto, ocorreu uma diminuição significativa (p=0,012) na proliferação e viabilidade celular após 48h de rotação no clinostato, o que corrobora pela literatura científica. A comparação dos resultados obtidos na clinorrotação em 24h e 48h revelou uma diferença significativa entre eles (p=0,003).Estes resultados validam o Clinostato 3D do Centro de Microgravidade como uma ferramenta capaz de simular microgravidade na Terra. O presente trabalho indica que a depressão imunológica associada aos vôos espaciais não está somente relacionada ao estresse físico e psicológico que o astronauta está sujeito, mas que esta pode ser causada pela microgravidade em si, a qual afeta a proliferação e a viabilidade celular. Os resultados do experimento com células tumorais K562 mostraram um crescimento significativo em relação ao controle estático (p=0,007), indicando que mais estudos na área de imunidade a tumores em microgravidade são necessários.
13

Otimização do protocolo de diferenciação de células-tronco embrionárias murinas para tecido epitelial alveolar em microgravidade modelada utilizando colágeno como matriz de microencapsulamento

Guimarães, Ernesto da Silveira Goulart 11 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2015-12-09T13:39:55Z No. of bitstreams: 1 ernestodasilveiragoulartguimaraes.pdf: 2498729 bytes, checksum: 6d75444a1433ed6c93931367c98d37a4 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2015-12-09T13:51:35Z (GMT) No. of bitstreams: 1 ernestodasilveiragoulartguimaraes.pdf: 2498729 bytes, checksum: 6d75444a1433ed6c93931367c98d37a4 (MD5) / Made available in DSpace on 2015-12-09T13:51:35Z (GMT). No. of bitstreams: 1 ernestodasilveiragoulartguimaraes.pdf: 2498729 bytes, checksum: 6d75444a1433ed6c93931367c98d37a4 (MD5) Previous issue date: 2015-03-11 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A doença obstrutiva pulmonar crônica é quarta maior causa de morte no mundo. Abordagens utilizando a engenharia de tecidos para tratar tal condição estão ganhando destaque na comunidade acadêmica. Uma fonte viável de células-tronco pluripotentes, assim como protocolos de diferenciação altamente eficientes são necessários para dar sustentação à regeneração do tecido alveolar lesados. O cultivo de células-tronco embrionárias microencapsuladas em hidrogéis tridimensionais em microgravidade modelada recentemente mostrou ser mais eficaz para a diferenciação de células epiteliais alveolares que protocolos bidimensionais padrões. Tendo em vista este protocolo, o objetivo deste trabalho foi de avaliar a influencia de uma nova matriz de encapsulamento feita de colágeno tipo I comparado à matriz de encapsulamento padrão de alginato para diferenciação e crescimento de células tronco embrionárias de camundongos (E14 12 delta S) para um fenótipo de células epiteliais alveolares, utilizando meio condicionado de células A549 como indutor de diferenciação. Foi realizada a caracterização físico-química do novo material hidrogélico (deformação por secagem, percentual de água, análise topográfica e cinética de transporte molecular), determinação do crescimento dos agregados celulares e o numero total final de células viáveis ao final do experimento. Foram analisamos marcadores gênicos de diferenciação para endoderme (FOXA2, SOX17 e CXCR4) e tecido epitelial pulmonar (SPA, SPB e SPC) na metade e ao final do experimento. O novo material apresentou uma capacidade aprimorada de transporte de massas devido à natureza de sua estrutura mais porosa e hidrofílica, com fibras aparentes bem definidas. As células apresentaram uma maior curva de crescimento dentro do novo material assim como maior numero total de células viáveis ao final do experimento. A análise genética de marcadores de endoderme mostrou que a nova matriz de colágeno propicia uma aparente diferenciação mais rápida em endoderme que na matriz de alginato, assim como, inicia mais rapidamente a expressão aparente de marcadores de células epiteliais alveolares (SPA e SPB, mas não SPC). Este trabalho mostra que microcápsulas de colágeno tipo I são aparentemente uma matriz melhor para crescimento e diferenciação em microgravidade modelada de células-tronco embrionárias para a produção in vitro de células epiteliais alveolares. Palavras / Chronic obstructive pulmonary disease is the fourth leading cause of death worldwide. Approaches using tissue engineering to treat this condition have recently gained prominence in the academic community. A viable source of pluripotent stem cells, as well as highly efficient differentiation protocols is needed to support the regeneration of injured alveoli. Culture of embryonic stem cells in three-dimension microencapsulated hydrogels in modeled microgravity has recently been shown to be more effective for the differentiation of alveoli epithelium cells than standard two-dimensional protocols. Given this protocol, the aim of this study was to evaluate the influence of a new encapsulation matrix made of collagen type I compared to standard encapsulation material of alginate for the differentiation and growth of mouse embryonic stem cells (E14 12 delta S) towards alveoli epithelium phenotype using A549-cells conditioned medium as inducer of the differentiation. Was performed a physical-chemical characterization of the new hydrogel material (drying deformation, water percentage, topographical analysis and molecular transport kinetics analysis) as well as the growth of cellular aggregates and total number of viable cells at the end of the experiment. Gene markers were analyzed for endoderm differentiation (FOXA2, SOX17 and CXCR4) and alveoli epithelial tissue (SPA, SPB and SPC) at the middle and at the end of the experiment. The new material shows an enhanced mass transport ability due to its own porously and hydrophilic structure nature with well-defined apparent fibers. Cells exhibited a higher growth curve as well as a higher total number of viable cells at the end of the experiment. Genetic analysis for markers of endoderm showed that new collagen matrix apparently provides a faster endoderm differentiation than the alginate matrix, and starts the apparent expression of alveolar epithelium markers (SPA and SPB, but not SPC) sooner. This work showed that collagen type I microcapsules are apparently a better matrix for growth and differentiation in modeled microgravity of embryonic stem cells for in vitro production of alveolar epithelial cells.
14

Modelo de suspensão pela cauda e seu efeito em algumas propriedades mecânicas do osso do rato / Model of suspension for the tail and its effect in some mechanical properties of the bone of the rat

Silva, Adriana Valadares da 13 December 2002 (has links)
A manutenção do metabolismo mineral normal dos ossos é um resultado de vários fatores inclusive as solicitações mecânicas que são aplicadas aos ossos pelas contrações musculares e força da gravidade. O propósito desta investigação foi estudar um modelo de suspensão de rato pela cauda que simulasse assim as alterações esqueléticas que podem acontecer em um ambiente de microgravidade. O modelo foi analisado em termos de tolerância do animal e os efeitos sobre a resistência mecânica do complexo tíbia-fíbula. Após a realização do ensaio de flexão em três pontos foram obtidos os principais parâmetros mecânicos (carga e deflexão no limite máximo, carga e deflexão no limite elástico, rigidez e resiliência). Foram utilizadas cinqüenta e três ratas fêmeas, distribuídas em quatro grupos conforme o período de suspensão (controle, 7, 14 e 21 dias). O modelo de suspensão mostrou-se eficaz com boa adaptação dos animais e promoveu um enfraquecimento significativo nos ossos principalmente no período de 21 dias / The maintenance of the normal metabolism of minerals in bone is a result of several factors including the mechanical demands that are applied to the bones by the muscle contractions and gravity force. The purpose of this investigation was to study a model of tail suspension of the rat thus simulating the skeletal alterations that may occur in a microgravity environment. The model was analyzed in terms of animal tolerance and the ensuing effects on the mechanical resistance of the tibiofibular complex. After a three-point bending test in flexion the main mechanical parameters were obtained, (load and deflection at the ultimate limit, load and deflection at the yielding point, stiffness and resilience). Fifty-three adult female rats were used and distributed in four groups according to the length of time in suspension (control, 7, 14 and 21 days). The model of suspension was efficient with well adaptation of the animals and caused a significative weakness of bones mainly in the 21 day period
15

Desenvolvimento de uma centr?fuga humana movida a exerc?cio para treinamento de pilotos e pesquisas aeroespaciais

Albuquerque, Marcelo Possamai 30 March 2012 (has links)
Made available in DSpace on 2015-04-14T13:56:23Z (GMT). No. of bitstreams: 1 438961.pdf: 14871775 bytes, checksum: 8015d4a0c0c3bcafccfc35adab6874d5 (MD5) Previous issue date: 2012-03-30 / The human body is adapted to live at an approximate gravitational acceleration of 9.81 m/s?, this being equivalent to 1G. Physiological problems can occur if the body is subjected to the effects of a greater or lesser acceleration than this value. The degree of these physiological problems directly depends on the body axis affected, the intensity of acceleration and the length of time it is applied. Current equipment that can apply harmful acceleration forces includes rockets and fighter jet aircraft. Human centrifuges can be used in order to improve the resistance of the human body to this G-force, and also to develop research in this area. These devices perform a circular motion about one axis, producing an inertial reaction to the centripetal acceleration that is used to simulate G-force. Human centrifuges have been used in aerospace physiology since the middle of the 20th century. Pilot training and national research in this area are deficient in Brazil, however, as the country is lacking in this type of equipment. Thus, with this in mind, a human centrifuge was built at the Microgravity Centre/FENG PUCRS. The equipment, called the Albuquerque centrifuge, was built within a low cost budget and has good mobility in comparison to other conventional centrifuge models. The main elements of the Albuquerque centrifuge are: a base, a circular platform around the base, wheels supported on the platform, and an arm with a radius of 2.5 m situated above these wheels. There is also a central axis that connects the base and the arm, allowing the rotational movement of the arm. A subject will be positioned in a chair at one end of the arm, whilst a system of counterweights will be used at the opposite end to balance the equipment load. The base has a pyramid format and acts as the support for the arm structure. The circular platform around the base supports the two wheels that extend down from the arm, and these serve to distribute the load on both sides on the axis. The system axes were constructed using 1045 steel and the other structures using 1020 steel. The structure of the centrifuge is able to support the weight of a volunteer up to 120 kg. The total weight of the equipment itself is estimated to be about 300 kg. The movement of the Albuquerque centrifuge is generated by means of human-powered equipment, without the use of any form of mechanical or electrical motor. This equipment comprises of two devices that simulate the pedaling of a bicycle, one being located externally to the centrifuge, and the other being fitted internally and positioned at one end of the arm. Thus, the volunteer can also perform physical exercise whilst being under the influence of simulated gravity. Having tested the system without the presence a person onboard, that is to say, using external traction only, it is concluded that the equipment is capable of achieving an acceleration close to +3Gz. / O ser humano est? adaptado a viver em uma acelera??o gravitacional aproximada de 9,81 m/s?, sendo ela equivalente ? 1G. Caso ele sofra o efeito de acelera??es de valor superior ou inferior a esse valor problemas de ordem fisiol?gica podem ocorrer. O agravamento desses problemas fisiol?gicos depende diretamente do eixo corporal afetado, a intensidade das acelera??es e o tempo de aplica??o das mesmas. Foguetes e avi?es de ca?a s?o os equipamentos atuais que mais aplicam acelera??es nocivas. Assim, para treinar a resist?ncia do corpo humano ? for?a G e desenvolver pesquisas na ?rea, s?o utilizadas centr?fugas humanas. Esses equipamentos executam movimentos circulares em torno de um eixo, produzindo uma rea??o inercial ? acelera??o centr?peta que ? utilizada para simular uma for?a G. As centr?fugas humanas v?m sendo utilizadas na fisiologia aeroespacial desde a metade do s?culo 20. Por?m, treinamentos com pilotos e pesquisas nacionais nessa ?rea s?o deficit?rios no Brasil, uma vez que o pa?s n?o possui esse tipo de equipamento. Ent?o, para suprir essa necessidade, uma centr?fuga humana foi constru?da no Centro de Microgravidade/FENG da PUCRS. O equipamento foi denominado Centr?fuga Albuquerque e foi constru?do dentro de um or?amento de baixo custo, possuindo boa mobilidade comparada a outros modelos convencionais de centr?fugas. Os elementos principais da Centr?fuga Albuquerque s?o: uma Base, um disco ao redor da Base, rodas sobre o disco e um Bra?o sobre estas rodas, de raio 2,5 m Existe tamb?m um eixo central que interliga a Base e o Bra?o, de forma a permitir o movimento rotat?rio do Bra?o. Em um dos lados do Bra?o o volunt?rio ficar? alocado em uma cadeira e, no outro lado, ficar? um sistema de contrapesos para equilibrar as cargas do equipamento. A Base tem formato piramidal e serve para sustentar a estrutura do Bra?o. Ao redor da Base, encontra-se o disco, sobre o qual est?o as duas rodas presentes no Bra?o, que servem para distribuir as cargas de ambos os lados sobre o eixo. Os eixos do sistema foram constru?dos em A?o 1045 e as demais estruturas em A?o 1020. A estrutura da centr?fuga ? capaz de suportar volunt?rios com pesos de 120 kg. O peso total do equipamento ? calculado em aproximadamente 300 kg. O movimento da Centr?fuga Albuquerque ? gerado atrav?s de um equipamento de tra??o humana, sem a utiliza??o de nenhum tipo de motor mec?nico ou el?trico. Esse equipamento ? composto por dois dispositivos que simulam as pedaladas de uma bicicleta, sendo um deles localizado externamente ? centr?fuga e o outro em seu interior, posicionado junto ? extremidade de um dos 7 lados. Assim, o volunt?rio que estar? sob o efeito de uma gravidade simuladatamb?m realizar? exerc?cios f?sicos. Ap?s testes de funcionamento do sistema, sem a presen?a de seres humanos em seu interior, isto ?, utilizando apenas a tra??o externa, conclui-se que o equipamento ? capaz de alcan?ar acelera??es pr?ximas ? +3 Gz.
16

Reanimação cardiopulmonar em ambiente aeroespacial

Castro, Joao de Carvalho January 2006 (has links)
Introdução: Parada Cardiorrespiratória (PCR) é uma emergência médica, quando ocorrer fora do ambiente hospitalar, o imediato atendimento à vítima é vital. A imediata Reanimação Cardiopulmonar (RCP), no ambiente extra-hospitalar é muito importante. A denominação aeroespacial reúne ambiente aéreo (cabine de aeronaves pressurizadas, altitude) e, espacial (ambiente com microgravidade, flutuação). No ambiente aéreo, importa a condição hipobárica e a hipóxia resultante. Quanto ao ambiente espacial, importa a condição de microgravidade e a incapacidade de exercer força e peso, como na superfície terrestre. Estes, e outros aspectos da RCP aeroespacial, são abordados no presente estudo. Objetivos: Ambiente aéreo: avaliar a qualidade do ar expirado, por um socorrista, durante RCP, em ambiente hipobárico, e, avaliar a suplementação de oxigênio para o socorrista, como forma de correção da mistura gasosa expirada, na altitude. Ambiente espacial: avaliar a eficácia de uma nova posição para RCP, por um só indivíduo, sem auxílio, na microgravidade. Materiais e Métodos: Utilizou-se uma câmara hipobárica, para a simulação da altitude, no ambiente aéreo. A RCP foi avaliada ao nível do mar e na altitude de 8.000 pés. Vôos parabólicos foram utilizados para a simulação de microgravidade. Um manequim foi o modelo de PCR em ambos os ambientes. No ambiente aéreo, avaliou-se a oferta de oxigênio expirada (boca-a-boca), pelo socorrista à vítima. Em microgravidade foi avaliada a efetividade da posição estudada, abraço da vítima com as pernas e o uso das mesmas, como apoio para a RCP, através da profundidade (mm), e freqüência (por minuto), das compressões torácicas e, da ventilação (volume de ar em mililitros). Resultados: Pressão de oxigênio cai de +108,3 mmHg (nível do mar), para +72,3 mmHg (8.000 pés). Com suplementação o valor é +108,0 mmHg. RCP em microgravidade: + 41,3 mm, + 80,2 /min, (sem ventilação). Massagem + ventilação (+ 44,0 mm, + 68,3 /min, + 491,0 ml de ar). Conclusões: Existe importante redução na oferta de oxigênio, à vítima de PCR, em altitude de 8.000 pés. Suplementação de oxigênio ao socorrista, 4 litros/minuto, por óculos nasal, pode corrigir esta redução. A posição proposta, para o ambiente espacial, deve ser considerada com uma possibilidade de RCP na microgravidade. / Introduction: Cardiac arrest (CA) is a medical emergency, and when occurring outside the hospital environment, immediate victim’s assistance is vital. Cardiopulmonary Resuscitation (CPR) at the extra-hospital environment is very important. Aerospace denomination joins an aerial environment (pressurized airplane cabins, altitude), and space (microgravity environment, floating). Within the aerial environment, hypobaric condition and resulting hypoxia do matter. Considering the space environment, microgravity condition and the inability to exert force and weight such as at the surface level, are important. Those and other aspects of aerospace CPR are approached in this present study. Objectives: Aerial environment: To evaluate the quality of exhaled air from the practitioner, during CPR within a hypobaric environment, and to assess supplemental oxygen offer to the practitioner as a form of correcting the exhaled gas mixture at altitude. Space environment: To assess the efficacy of a new CPR position, for a sole, unassisted individual at microgravity. Material and Methods: A hypobaric chamber for aerial environment altitude simulation was employed. CPR was assessed at sea level and at the altitude of 8,000 feet. Parabolic flights were employed for microgravity simulation. A CPR manikin was the model for both environments. At the aerial environment, exhaled (mouth-to-mouth) oxygen offer by the practitioner to the victim was assessed. In microgravity, the effectiveness of the studied position, which consisted of securing the victim with the legs and using them for CPR restraint, was evaluated by depth (millimeters), and frequency (per minute) of chest compressions, and ventilation (air volume in milliliters). Results: Oxygen pressure falls from ± 108.3 mmHg (at sea level) to ± 72.3 mmHg (8,000 feet). With supplementation, the value is ± 108.0 mmHg. CPR in microgravity: ± 41.3 mm, ± 80.2/minute (without ventilation). Massage + ventilation (± 44.0 mm, ± 68.3/minute, ± 491.0 ml of air). Conclusions: There is an important reduction of oxygen offer to the CPR victim at the altitude of 8,000 feet. Oxygen supplementation to the medic assistant at 4 liters/minute through nasal cannulae may correct such reduction. The proposed position for the spatial environment should be considered as a possibility for CPR at microgravity.
17

Reanimação cardiopulmonar em ambiente aeroespacial

Castro, Joao de Carvalho January 2006 (has links)
Introdução: Parada Cardiorrespiratória (PCR) é uma emergência médica, quando ocorrer fora do ambiente hospitalar, o imediato atendimento à vítima é vital. A imediata Reanimação Cardiopulmonar (RCP), no ambiente extra-hospitalar é muito importante. A denominação aeroespacial reúne ambiente aéreo (cabine de aeronaves pressurizadas, altitude) e, espacial (ambiente com microgravidade, flutuação). No ambiente aéreo, importa a condição hipobárica e a hipóxia resultante. Quanto ao ambiente espacial, importa a condição de microgravidade e a incapacidade de exercer força e peso, como na superfície terrestre. Estes, e outros aspectos da RCP aeroespacial, são abordados no presente estudo. Objetivos: Ambiente aéreo: avaliar a qualidade do ar expirado, por um socorrista, durante RCP, em ambiente hipobárico, e, avaliar a suplementação de oxigênio para o socorrista, como forma de correção da mistura gasosa expirada, na altitude. Ambiente espacial: avaliar a eficácia de uma nova posição para RCP, por um só indivíduo, sem auxílio, na microgravidade. Materiais e Métodos: Utilizou-se uma câmara hipobárica, para a simulação da altitude, no ambiente aéreo. A RCP foi avaliada ao nível do mar e na altitude de 8.000 pés. Vôos parabólicos foram utilizados para a simulação de microgravidade. Um manequim foi o modelo de PCR em ambos os ambientes. No ambiente aéreo, avaliou-se a oferta de oxigênio expirada (boca-a-boca), pelo socorrista à vítima. Em microgravidade foi avaliada a efetividade da posição estudada, abraço da vítima com as pernas e o uso das mesmas, como apoio para a RCP, através da profundidade (mm), e freqüência (por minuto), das compressões torácicas e, da ventilação (volume de ar em mililitros). Resultados: Pressão de oxigênio cai de +108,3 mmHg (nível do mar), para +72,3 mmHg (8.000 pés). Com suplementação o valor é +108,0 mmHg. RCP em microgravidade: + 41,3 mm, + 80,2 /min, (sem ventilação). Massagem + ventilação (+ 44,0 mm, + 68,3 /min, + 491,0 ml de ar). Conclusões: Existe importante redução na oferta de oxigênio, à vítima de PCR, em altitude de 8.000 pés. Suplementação de oxigênio ao socorrista, 4 litros/minuto, por óculos nasal, pode corrigir esta redução. A posição proposta, para o ambiente espacial, deve ser considerada com uma possibilidade de RCP na microgravidade. / Introduction: Cardiac arrest (CA) is a medical emergency, and when occurring outside the hospital environment, immediate victim’s assistance is vital. Cardiopulmonary Resuscitation (CPR) at the extra-hospital environment is very important. Aerospace denomination joins an aerial environment (pressurized airplane cabins, altitude), and space (microgravity environment, floating). Within the aerial environment, hypobaric condition and resulting hypoxia do matter. Considering the space environment, microgravity condition and the inability to exert force and weight such as at the surface level, are important. Those and other aspects of aerospace CPR are approached in this present study. Objectives: Aerial environment: To evaluate the quality of exhaled air from the practitioner, during CPR within a hypobaric environment, and to assess supplemental oxygen offer to the practitioner as a form of correcting the exhaled gas mixture at altitude. Space environment: To assess the efficacy of a new CPR position, for a sole, unassisted individual at microgravity. Material and Methods: A hypobaric chamber for aerial environment altitude simulation was employed. CPR was assessed at sea level and at the altitude of 8,000 feet. Parabolic flights were employed for microgravity simulation. A CPR manikin was the model for both environments. At the aerial environment, exhaled (mouth-to-mouth) oxygen offer by the practitioner to the victim was assessed. In microgravity, the effectiveness of the studied position, which consisted of securing the victim with the legs and using them for CPR restraint, was evaluated by depth (millimeters), and frequency (per minute) of chest compressions, and ventilation (air volume in milliliters). Results: Oxygen pressure falls from ± 108.3 mmHg (at sea level) to ± 72.3 mmHg (8,000 feet). With supplementation, the value is ± 108.0 mmHg. CPR in microgravity: ± 41.3 mm, ± 80.2/minute (without ventilation). Massage + ventilation (± 44.0 mm, ± 68.3/minute, ± 491.0 ml of air). Conclusions: There is an important reduction of oxygen offer to the CPR victim at the altitude of 8,000 feet. Oxygen supplementation to the medic assistant at 4 liters/minute through nasal cannulae may correct such reduction. The proposed position for the spatial environment should be considered as a possibility for CPR at microgravity.
18

Reanimação cardiopulmonar em ambiente aeroespacial

Castro, Joao de Carvalho January 2006 (has links)
Introdução: Parada Cardiorrespiratória (PCR) é uma emergência médica, quando ocorrer fora do ambiente hospitalar, o imediato atendimento à vítima é vital. A imediata Reanimação Cardiopulmonar (RCP), no ambiente extra-hospitalar é muito importante. A denominação aeroespacial reúne ambiente aéreo (cabine de aeronaves pressurizadas, altitude) e, espacial (ambiente com microgravidade, flutuação). No ambiente aéreo, importa a condição hipobárica e a hipóxia resultante. Quanto ao ambiente espacial, importa a condição de microgravidade e a incapacidade de exercer força e peso, como na superfície terrestre. Estes, e outros aspectos da RCP aeroespacial, são abordados no presente estudo. Objetivos: Ambiente aéreo: avaliar a qualidade do ar expirado, por um socorrista, durante RCP, em ambiente hipobárico, e, avaliar a suplementação de oxigênio para o socorrista, como forma de correção da mistura gasosa expirada, na altitude. Ambiente espacial: avaliar a eficácia de uma nova posição para RCP, por um só indivíduo, sem auxílio, na microgravidade. Materiais e Métodos: Utilizou-se uma câmara hipobárica, para a simulação da altitude, no ambiente aéreo. A RCP foi avaliada ao nível do mar e na altitude de 8.000 pés. Vôos parabólicos foram utilizados para a simulação de microgravidade. Um manequim foi o modelo de PCR em ambos os ambientes. No ambiente aéreo, avaliou-se a oferta de oxigênio expirada (boca-a-boca), pelo socorrista à vítima. Em microgravidade foi avaliada a efetividade da posição estudada, abraço da vítima com as pernas e o uso das mesmas, como apoio para a RCP, através da profundidade (mm), e freqüência (por minuto), das compressões torácicas e, da ventilação (volume de ar em mililitros). Resultados: Pressão de oxigênio cai de +108,3 mmHg (nível do mar), para +72,3 mmHg (8.000 pés). Com suplementação o valor é +108,0 mmHg. RCP em microgravidade: + 41,3 mm, + 80,2 /min, (sem ventilação). Massagem + ventilação (+ 44,0 mm, + 68,3 /min, + 491,0 ml de ar). Conclusões: Existe importante redução na oferta de oxigênio, à vítima de PCR, em altitude de 8.000 pés. Suplementação de oxigênio ao socorrista, 4 litros/minuto, por óculos nasal, pode corrigir esta redução. A posição proposta, para o ambiente espacial, deve ser considerada com uma possibilidade de RCP na microgravidade. / Introduction: Cardiac arrest (CA) is a medical emergency, and when occurring outside the hospital environment, immediate victim’s assistance is vital. Cardiopulmonary Resuscitation (CPR) at the extra-hospital environment is very important. Aerospace denomination joins an aerial environment (pressurized airplane cabins, altitude), and space (microgravity environment, floating). Within the aerial environment, hypobaric condition and resulting hypoxia do matter. Considering the space environment, microgravity condition and the inability to exert force and weight such as at the surface level, are important. Those and other aspects of aerospace CPR are approached in this present study. Objectives: Aerial environment: To evaluate the quality of exhaled air from the practitioner, during CPR within a hypobaric environment, and to assess supplemental oxygen offer to the practitioner as a form of correcting the exhaled gas mixture at altitude. Space environment: To assess the efficacy of a new CPR position, for a sole, unassisted individual at microgravity. Material and Methods: A hypobaric chamber for aerial environment altitude simulation was employed. CPR was assessed at sea level and at the altitude of 8,000 feet. Parabolic flights were employed for microgravity simulation. A CPR manikin was the model for both environments. At the aerial environment, exhaled (mouth-to-mouth) oxygen offer by the practitioner to the victim was assessed. In microgravity, the effectiveness of the studied position, which consisted of securing the victim with the legs and using them for CPR restraint, was evaluated by depth (millimeters), and frequency (per minute) of chest compressions, and ventilation (air volume in milliliters). Results: Oxygen pressure falls from ± 108.3 mmHg (at sea level) to ± 72.3 mmHg (8,000 feet). With supplementation, the value is ± 108.0 mmHg. CPR in microgravity: ± 41.3 mm, ± 80.2/minute (without ventilation). Massage + ventilation (± 44.0 mm, ± 68.3/minute, ± 491.0 ml of air). Conclusions: There is an important reduction of oxygen offer to the CPR victim at the altitude of 8,000 feet. Oxygen supplementation to the medic assistant at 4 liters/minute through nasal cannulae may correct such reduction. The proposed position for the spatial environment should be considered as a possibility for CPR at microgravity.
19

Modelo de suspensão pela cauda e seu efeito em algumas propriedades mecânicas do osso do rato / Model of suspension for the tail and its effect in some mechanical properties of the bone of the rat

Adriana Valadares da Silva 13 December 2002 (has links)
A manutenção do metabolismo mineral normal dos ossos é um resultado de vários fatores inclusive as solicitações mecânicas que são aplicadas aos ossos pelas contrações musculares e força da gravidade. O propósito desta investigação foi estudar um modelo de suspensão de rato pela cauda que simulasse assim as alterações esqueléticas que podem acontecer em um ambiente de microgravidade. O modelo foi analisado em termos de tolerância do animal e os efeitos sobre a resistência mecânica do complexo tíbia-fíbula. Após a realização do ensaio de flexão em três pontos foram obtidos os principais parâmetros mecânicos (carga e deflexão no limite máximo, carga e deflexão no limite elástico, rigidez e resiliência). Foram utilizadas cinqüenta e três ratas fêmeas, distribuídas em quatro grupos conforme o período de suspensão (controle, 7, 14 e 21 dias). O modelo de suspensão mostrou-se eficaz com boa adaptação dos animais e promoveu um enfraquecimento significativo nos ossos principalmente no período de 21 dias / The maintenance of the normal metabolism of minerals in bone is a result of several factors including the mechanical demands that are applied to the bones by the muscle contractions and gravity force. The purpose of this investigation was to study a model of tail suspension of the rat thus simulating the skeletal alterations that may occur in a microgravity environment. The model was analyzed in terms of animal tolerance and the ensuing effects on the mechanical resistance of the tibiofibular complex. After a three-point bending test in flexion the main mechanical parameters were obtained, (load and deflection at the ultimate limit, load and deflection at the yielding point, stiffness and resilience). Fifty-three adult female rats were used and distributed in four groups according to the length of time in suspension (control, 7, 14 and 21 days). The model of suspension was efficient with well adaptation of the animals and caused a significative weakness of bones mainly in the 21 day period
20

Filmes nanoestruturados de prata autoformados por difusão térmica de nanopartículas em substratos vítreos ativos

Gonzaga Pedrosa, Gilmara January 2007 (has links)
Made available in DSpace on 2014-06-12T15:50:04Z (GMT). No. of bitstreams: 2 arquivo5274_1.pdf: 8726665 bytes, checksum: e50767e212c9c4ee6091073068ab87d4 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2007 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho teve como objetivo a preparação e caracterização de um material híbrido constituído por um filme nanoestruturado de prata autoformado através da difusão térmica de nanopartículas de prata, em um substrato ativo de vidro oxifluoreto. A particularidade do mecanismo utilizado na obtenção do filme de prata suportado na matriz vítrea consiste em um processo bottom-up em que o precursor do filme é introduzido na própria composição deste substrato, na forma iônica. O material híbrido é composto por uma matriz vítrea PbF2-GeO2- Al2O3 contendo AgF, Ag2O ou AgNO3. As amostras vítreas foram obtidas pela fusão dos reagentes em forno resistivo. O filme de prata nanoestruturado, com aparência metálica, foi crescido, na superfície das amostras durante tratamento térmico em torno da temperatura de transição vítrea (Tg). A caracterização das amostras foi realizada por calorimetria exploratória diferencial (DSC), difração de raios-X de pó, microscopia de força atômica (AFM), microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva de raio-X (EDS) e fotoeletrônica de raios-X (XPS). As análises de DSC sugerem que os íons de prata fazem parte da rede vítrea. Determinou-se o parâmetro de estabilidade de Saad e Poulain (S), que indicaram que a adição de prata na matriz vítrea aumenta sua estabilidade contra a desvitrificação. Por meio das imagens de AFM com medidas de rugosidade média (Ra) em áreas selecionadas na imagem, foi possível monitorar o crescimento dos filmes de prata nanoestruturados, em função do tempo de tratamento térmico em torno da Tg. As análises de MEV mostraram que o filme formado na superfície destas amostras apresenta uma nanoestrutura não-contínua, provavelmente sendo esta a razão da altíssima resistividade elétrica do filme. Entretanto, foi possível obter imagens por MEV dessas amostras, após a formação do filme de prata, sem necessidade de recobrimento por material condutor, sugerindo uma condutividade elétrica local. As análises de EDS e XPS confirmaram que a formação do filme de prata ocorre por meio de um processo de difusão de nanopartículas do interior para superfície das amostras. A análise de XPS também mostrou que o filme é constituído de prata metálica. O filme é resultado do processo bottom-up que se inicia com a redução da prata iônica, seguido de nucleação, crescimento e migração de nanopartículas metálicas. Pretende-se utilizar este novo material como substrato ativo para dispositivos nanoestruturados

Page generated in 0.1005 seconds