• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 20
  • 14
  • 9
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 46
  • 36
  • 28
  • 27
  • 24
  • 20
  • 20
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

DEVELOPMENT OF HIGH THROUGHPUT PLASTIC MICROLENSES USING A REPLACEABLE INJECTION MOLD DISK

APPASAMY, SREERAM January 2003 (has links)
No description available.
42

Silicon MEMS-Based Development and Characterization of Batch Fabricated Microneedles for Biomedical Applications

Rajaraman, Swaminathan 11 October 2001 (has links)
No description available.
43

Femtosecond laser material processing for micro-/nano-scale fabrication and biomedical applications

Choi, Hae Woon 30 July 2007 (has links)
No description available.
44

Study of Ultrashort Pulse Laser Induced Surface Ripples and Investigation of Other Applications of Ultrashort Pulse Laser Micromachining and Ablation

Hsu, Eugene 10 1900 (has links)
<p> This thesis reports findings from three series of experiments related to ultrashort laser pulse interactions with materials. The first series investigates the formation of laser induced ripples that have spatial periods much shorter than the irradiation wavelength after laser irradiation. The second series of experiments explores the capabilities of ultrashort pulse laser micromachining on optical fiber modifications for niche applications. Lastly, preliminary work in establishing a double-pulse ablation technique is reported. </p> <p> The first set of experiments reported in this thesis investigates the morphology of surface ripples that are generated when irradiated with multiple ultrashort laser pulses. Two types of surface ripples can form after irradiation. The fust type has spatial periods near the wavelength of the irradiation pulses and the second has spatial periods substantially below the irradiation wavelength (typically 114 to 115 of the free-space irradiation wavelength are observed in our studies). These substantially subwavelength ripples form when the irradiation wavelength corresponds to a photon energy that is below the bandgap of the target material. The Ti:Sapphire laser systems used in this series of experiments provides pulses centered around 800 nm. Gallium phosphide (GaP) was chosen to be the main material for investigation since 800 nm corresponds to a photon energy that is below the bandgap of this material; no frequency conversion needs to be carried out when GaP is the material of choice for subwavelength ripples studies. In this series of experiments substantially different irradiation conditions were investigated: pulse durations varied from 150 fs to 7 ns, laser energies ranges from well above the ablation and modification threshold to well below, both 800 nm and 400 nm wavelengths, and "scrambled" (where polarization was rotated between each successive pulse) polarization as well as circular polarization were used. Microscopy techniques employed to study these ripples include optical microscopy, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Cross-sectional studies with transmission electron microscopy were also carried out by using focused ion beam milling to prepare thin specimens across irradiated regions. Sapphire was also used as the irradiation target for 800 nm and 400 nm pulses since it has a large bandgap and even 400 nm corresponds to an energy that is below its bandgap. Irradiation conditions where the two types of ripples are observed are determined. Also, microscopy of the ripple features provided insights in to the formation mechanism of the subwavelength ripples. </p> <p> In the second series of experiments, preliminary work was performed to investigate the capabilities of ultrashort laser micromachining in fiber optic applications. This series of experiments can be subdivided in to two categories. </p> <p> The goal of the first fiber investigation was to create a slit in a metallic coating deposited on a fiber facet. Such a feature might eliminate the use of external slits (e.g. for spectrometers), especially ifthe output of the fiber depends on its geometry (e.g. polarization-maintaining fiber). The first experiment carried out was micromachining of a ~ 180 nm layer of gold that was deposited on a glass substrate, in order to determine irradiation conditions where the gold layer can be removed while the glass is not damaged. Once the irradiation condition was established by studying the micromachined gold layer on glass substrate, gold layers were deposited on fiber facets for micromachining experiments. The results showed promising potential, but fme tuning of the irradiation parameters, and processing as well as microscopy techniques are needed before useful applications can be realized. </p> <p> The second set of fiber experiments investigates irradiation conditions that are appropriate to micromachine features into fibers such as v-grooves and beveled ends. Preliminary work was carried out to determine a suitable focusing scheme for this application. Different pulse durations and a pulse train were also employed in hope of minimize chipping and cracking. This investigation did not reach a conclusion on whether micromachining with ultrashort laser pulses are in fact suitable for processing of optical fibers, where high quality facets are required. Future investigation could provide further information on the feasibility of laser micromachining on fabricating features in optical fibers. </p> <p> Lastly, a double-pulse ablation scheme was established and explored. Double-pulse ablation had been reported in the literature to improve material removal rate and the appearance of the fmal morphology. However, this setup can be adapted to investigate the ablation mechanisms and provide insight into the state of the material at different time frames of ablation. While the experimental results are preliminary, this technique showed potential, along with possible extensions of this technique, to further investigate the ablation mechanisms. </p> / Thesis / Master of Applied Science (MASc)
45

Computational and experimental investigations of laser drilling and welding for microelectronic packaging

Han, Wei 13 May 2004 (has links)
Recent advances in microelectronics and packaging industry are characterized by a progressive miniaturization in response to a general trend toward higher integration and package density. Corresponding to this are the challenges to traditional manufacturing processes. Some of these challenges can be satisfied by laser micromachining, because of its inherent advantages. In laser micromachining, there is no tool wear, the heat affected zone can be localized into a very small area, and the laser micromachining systems can be operated at a very wide range of speeds. Some applications of laser micromachining include pulsed Nd:YAG laser spot welding for the photonic devices and laser microdrilling in the computer printed circuit board market. Although laser micromachining has become widely used in microelectronics and packaging industry, it still produces results having a variability in properties and quality due to very complex phenomena involved in the process, including, but not limited to, heat transfer, fluid flow, plasma effects, and metallurgical problems. Therefore, in order to utilize the advantages of laser micromachining and to achieve anticipated results, it is necessary to develop a thorough understanding of the involved physical processes, especially those relating to microelectronics and packaging applications. The objective of this Dissertation was to study laser micromachining processes, especially laser drilling and welding of metals or their alloys, for the microscale applications. The investigations performed in this Dissertation were based on analytical, computational, and experimental solutions (ACES) methodology. More specifically, the studies were focused on development of a consistent set of equations representing interaction of the laser beam with materials of interest in this Dissertation, solution of these equations by finite difference method (FDM) and finite element method (FEM), experimental demonstration of laser micromachining, and correlation of the results. The contributions of this Dissertation include: 1)development of a finite difference method (FDM) program with color graphic interface, which has the capability of adjusting the laser power distributions, coefficient of energy absorption, and nonlinear material properties of the workpiece as functions of temperature, and can be extended to calculate the fluid dynamic phenomena and the profiles of laser micromachined workpieces, 2)detailed investigations of the effect of laser operating parameters on the results of the profiles and dimensions of the laser microdrilled or microwelded workpiece, which provide the guideline and advance currently existing laser micromachining processes, 3)use, for the first time, of a novel optoelectronic holography (OEH) system, which provides non-contact full-field deformation measurements with sub-micrometer accuracy, for quantitative characterization of thermal deformations of the laser micromachined parts, 4)experimental evaluations of strength of laser microwelds as the function of laser power levels and number of microwelds, which showed the lower values than the strength of the base material due to the increase of hardness at the heat affected zone (HAZ) of the microwelds, 5)measurements of temperature profiles during laser microwelding, which showed good correlations with computational results, 6)detailed considerations of absorption of laser beam energy, effect of thermal and aerodynamic conditions due to shielding gas, and the formation of plasma and its effect on laser micromachining processes. The investigations presented in this Dissertation show viability of the laser micromachining processes, account for the considerations required for a better understanding of laser micromachining processes, and provide guideline which can help explaining and advancing the currently existing laser micromachining processes. Results of this Dissertation will facilitate improvements and optimizations of the state-of-the-art laser micromachining techniques and enable the emerging technologies related to the multi-disciplinary field of microelectronics and packaging for the future.
46

Development of micromachined millimeter-wave modules for next-generation wireless transceiver front-ends

Pan, Bo 05 May 2008 (has links)
This thesis discusses the design, fabrication, integration and characterization of millimeter wave passive components using polymer-core-conductor surface micromachining technologies. Several antennas, including a W-band broadband micromachined monopole antenna on a lossy glass substrate, and a Ka-band elevated patch antenna, and a V-band micromachined horn antenna, are presented. All antennas have advantages such as a broad operation band and high efficiency. A low-loss broadband coupler and a high-Q cavity for millimeter-wave applications, using surface micromachining technologies is reported using the same technology. Several low-loss all-pole band-pass filters and transmission-zero filters are developed, respectively. Superior simulation and measurement results show that polymer-core-conductor surface micromachining is a powerful technology for the integration of high-performance cavity, coupler and filters. Integration of high performance millimeter-wave transceiver front-end is also presented for the first time. By elevating a cavity-filter-based duplexer and a horn antenna on top of the substrate and using air as the filler, the dielectric loss can be eliminated. A full-duplex transceiver front-end integrated with amplifiers are designed, fabricated, and comprehensively characterized to demonstrate advantages brought by this surface micromachining technology. It is a low loss and substrate-independent solution for millimeter-wave transceiver integration.
47

Metal-transfer-molding (MTM) technique for micromachined RF components

Zhao, Yanzhu 08 July 2008 (has links)
This dissertation reports a metal-transfer-molding (MTM) technique for simultaneous implementation of air-lifted RF passive components, as well as coplanar waveguide (CPW) structures, in a high performance and potentially cost-effective fashion. A metal transfer mechanism is introduced into the conventional micro-molding process to realize polymer-core RF passive components and integration. A system-on-package (SOP) integration scheme of front-end RF components can be realized by this process. Several air-lifted RF components based on MTM technology have been presented with excellent performance. As an integration application of the MTM technology, a novel wireless passive airflow sensor based on the RF evanescent-mode cavity resonators has been also presented. The sensor makes use of RF technology to measure wind velocity through changes in the resonant frequency with applied airflow. Compared with reported wireless sensors based on conventional RF cavity resonator, this design has advantages such as compact size and greatly improved sensitivity. Wireless interrogating has also been demonstrated for the passive sensor. Overall, the RF components developed in this thesis illustrate the great potential of MTM technology in both wireless communication and sensor areas.
48

Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

Zaman, Mohammad Faisal 31 March 2008 (has links)
The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.
49

Mikromechanische Ultraschallwandler aus Silizium

Jia, Chenping 12 December 2005 (has links)
This paper discusses basic issues of micromachined ultrasonic transducers, including their design and fabrication. First, the acoustic fundamentals of ultrasonic transducers are introduced, and relevant simulation methods are illustrated. Following these topics, important aspects of silicon micromachining are presented. Based on this knowledge, two distinctive micromachining processes for transducer fabrication are proposed. One of them, the bulk process, has been proved to be successful, whereas for the second one, a surface process, some improvements are still needed. Besides these works, an innovative direct bonding technology is also developed. This technology constitutes the basis of the bulk process. Of course, it can also be used for the packaging of other MEMS devices.
50

Development of an electrochemical micromachining (μECM) machine

Spieser, Alexandre Frederic Jean January 2015 (has links)
Electrochemical machining (ECM) and especially electrochemical micromachining (μECM) became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications such as microfluidics systems and stressfree drilled holes in the automotive and aerospace sectors. Electrochemical machining is considered as a non-conventional machining process based on the phenomenon of electrolysis. This process requires maintaining a small gap - the interelectrode gap (IEG) - between the anode (workpiece) and the cathode (tool-electrode) in order to achieve acceptable machining results (i.e. accuracy, high aspect ratio with appropriate material removal rate and efficiency). This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has 3 axes of motion (X, Y and Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2nmresolution encoders for ultra-precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. A pulse power supply unit (PSU) and a special control algorithm have been implemented. The pulse power supply provides not only ultra-short pulses (50ns), but also plus and minus biases as well as a polarity switching functionality. It fulfils the requirements of tool preparation with reversed ECM on the machine. Moreover, the PSU is equipped with an ultrafast over current protection which prevents the tool-electrode from being damaged in case of short-circuits. Two different process control algorithms were made: one is fuzzy logic based and the other is adapting the feed rate according to the position and time at which short-circuits were detected. The developed machine is capable of drilling micro holes in hard-to-machine materials but also machine micro-styli and micro-needles for the metrology (micro CMM) and medical sectors. This work also presents drilling trials performed with the machine with an orbiting tool. Machining experiments were also carried out using electrolytes made of a combination of HCl and NaNO₃ aqueous solutions. The developed machine was used to fabricate micro tools out of 170μm WC-Co alloy shafts via micro electrochemical turning and drill deep holes via μECM in disks made of 18NiCr6 alloy. Results suggest that this process can be used for industrial applications for hard-to-machine materials. The author also suggests that the developed machine can be used to manufacture micro-probes and micro-tools for metrology and micro-manufacturing purposes.

Page generated in 0.0699 seconds