• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 20
  • 14
  • 9
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 46
  • 36
  • 28
  • 27
  • 24
  • 20
  • 20
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Femtosecond laser micromachining of advanced materials

Bian, Qiumei January 1900 (has links)
Doctor of Philosophy / Department of Industrial and Manufacturing Systems Engineering / Shuting Lei / Shuting Lei / Femtosecond (fs) laser ablation possesses unique characteristics for micromachining, notably non-thermal interaction with materials, high peak intensity, precision and flexibility. In this dissertation, the potential of fs laser ablation for machining polyurea aerogel and scribing thin film solar cell interconnection grooves is studied. In a preliminary background discussion, some key literature regarding the basic physics and mechanisms that govern ultrafast laser pulse interaction with materials and laser micromachining are summarized. First, the fs laser pulses are used to micromachine polyurea aerogel. The experimental results demonstrate that high quality machining surface can be obtained by tuning the laser fluence and beam scanning speed, which provides insights for micromachining polymers with porous structures. Second, a new fs laser micro-drilling technique is developed to drill micro-holes in stainless steel, in which a hollow core fiber is employed to transmit laser pulses to the target position. The coupling efficiency between the laser and the fiber is investigated and found to be strongly related to pulse energy and pulse duration. Third, the fs laser with various energy, pulse durations, and scanning speeds has been utilized to pattern Indium Tin Oxide (ITO) glass for thin film solar cells. The groove width decreases with increasing pulse duration due to the shorter the pulse duration the more effective of the energy used to material removal. In order to fully remove ITO without damaging the glass, the beam scanning speed need to precisely be controlled. Fourth, fs laser has been utilized to scribe Molybdenum thin film on Polyimide (PI) flexible substrate for Copper Indium Gallium Selenide (CIGS) thin film solar cells. The experimental parameters and results including ablation threshold, single- and multiple-pulse ablation shapes and ablation efficiency were discussed in details. In order to utilize the advantages of the fs lasers, the fabrication process has to be optimized for thin film patterning and structuring applications concerning both efficiency and quality. A predictive 3D Two Temperature Model (TTM) was proposed to predict ablation characteristics and help to understand the fs laser metal ablation mechanisms. 3D temperature field evolution for both electrons and lattice were demonstrated. The ablation model provides an insight to the physical processes occurring during fs laser excitation of metals. Desired processing fluence and process speed regime can be predicted by calculating the ablation threshold, ablation rate and ablation crater geometry using the developed model.
82

Microcélulas a combustível a etanol direto. / Direct ethanol micro-fuel cells.

Alves, Gustavo Marcati Alexandrino 09 March 2012 (has links)
Microcélulas a combustível são dispositivos miniaturizados conversores de energia química em energia elétrica. Esse tipo de dispositivo tem sido amplamente estudado para atuar como substituto de baterias em dispositivos móveis, devido principalmente, a uma densidade de energia teoricamente maior se comparado às baterias. Nesse trabalho, foi desenvolvido um processo de fabricação de uma microcélula a combustível alimentada com etanol direto, de dimensões milimétricas utilizando técnicas de microfabricação em silício. Empregou-se corrosão anisotrópica com tetrametilhidróxido de amônia para a confecção de uma membrana de silício perfurada, que foi utilizada como placa bipolar e suporte para catalisador. Aplicou-se essa estrutura em silício de duas maneiras para a construção de uma célula a combustível: depositando-se polímero líquido nos orifícios, obtendo-se, assim, uma membrana polimérica de troca iônica integrada, ou prensando uma montagem membrana-eletrodo entre duas dessas placas bipolares. A caracterização dessas células foi realizada utilizando o método de curva de polarização, onde foi possível observar o efeito da variação da concentração de etanol, temperatura e o efeito do catodo aberto para o ar, ou com oxigênio puro. A célula com eletrólito integrado atingiu tensão de circuito aberto máxima de 150 mV e densidade de potência máxima da ordem de 18 uW/cm² a 275 uA/cm², enquanto em teste temporal com carga fixa obteve-se, operação estável por pelo menos 30 minutos. Nas células com eletrodos comerciais alcançaram-se densidades de potência da ordem de 5,13 mW/cm² a 25 mA/cm², enquanto que com eletrodos fabricados no laboratório, obteve-se 1,23 mW/cm² a 8,8 mA/cm² aquecendo-se a célula a 45°C. / Micro fuel cells are miniaturized devices that convert chemical energy into electrical energy and have been widely studied to actuate as battery replacements in mobile devices, mainly due to a theoretical greater energy density in comparison to batteries. In this work, it was developed a fabrication process of a direct ethanol micro fuel cell in the millimeter scale, using silicon microfabrication techniques. Anisotropic wet etch was used to build a perforated silicon membrane that was applied in two ways to fabricate a micro fuel cell: Depositing liquid polymer in the holes, resulting like this in an integrated polymeric ion exchange membrane, or pressing a membrane-electrode assembly between two silicon bipolar plates. Those electrodes were acquired commercially, also were fabricated in the laboratory, using adapted fabrication process from the existing fuel cell literature. The characterization of these fuel cells was done by means of the polarization curves, in which it was possible to observe the effect of ethanol concentration, temperature and the effect of cathode open for the air or with oxygen flow. The fuel cell with integrated membrane achieved open circuit potential of 150 mV and maximum power density of 18 uW/cm² at 275 uA/cm², while in a temporal test with a constant load was possible to observe stable operation for at least 30 minutes. In the cells with commercial MEAS was achieved maximum power densities in the order of 5,13 mW/cm² at 25 mA/cm² while with laboratory fabricated MEAS was achieved 1,23 mW/cm² at 8,8 mA/cm² heating the cell at 45°C.
83

Microcélulas a combustível a etanol direto. / Direct ethanol micro-fuel cells.

Gustavo Marcati Alexandrino Alves 09 March 2012 (has links)
Microcélulas a combustível são dispositivos miniaturizados conversores de energia química em energia elétrica. Esse tipo de dispositivo tem sido amplamente estudado para atuar como substituto de baterias em dispositivos móveis, devido principalmente, a uma densidade de energia teoricamente maior se comparado às baterias. Nesse trabalho, foi desenvolvido um processo de fabricação de uma microcélula a combustível alimentada com etanol direto, de dimensões milimétricas utilizando técnicas de microfabricação em silício. Empregou-se corrosão anisotrópica com tetrametilhidróxido de amônia para a confecção de uma membrana de silício perfurada, que foi utilizada como placa bipolar e suporte para catalisador. Aplicou-se essa estrutura em silício de duas maneiras para a construção de uma célula a combustível: depositando-se polímero líquido nos orifícios, obtendo-se, assim, uma membrana polimérica de troca iônica integrada, ou prensando uma montagem membrana-eletrodo entre duas dessas placas bipolares. A caracterização dessas células foi realizada utilizando o método de curva de polarização, onde foi possível observar o efeito da variação da concentração de etanol, temperatura e o efeito do catodo aberto para o ar, ou com oxigênio puro. A célula com eletrólito integrado atingiu tensão de circuito aberto máxima de 150 mV e densidade de potência máxima da ordem de 18 uW/cm² a 275 uA/cm², enquanto em teste temporal com carga fixa obteve-se, operação estável por pelo menos 30 minutos. Nas células com eletrodos comerciais alcançaram-se densidades de potência da ordem de 5,13 mW/cm² a 25 mA/cm², enquanto que com eletrodos fabricados no laboratório, obteve-se 1,23 mW/cm² a 8,8 mA/cm² aquecendo-se a célula a 45°C. / Micro fuel cells are miniaturized devices that convert chemical energy into electrical energy and have been widely studied to actuate as battery replacements in mobile devices, mainly due to a theoretical greater energy density in comparison to batteries. In this work, it was developed a fabrication process of a direct ethanol micro fuel cell in the millimeter scale, using silicon microfabrication techniques. Anisotropic wet etch was used to build a perforated silicon membrane that was applied in two ways to fabricate a micro fuel cell: Depositing liquid polymer in the holes, resulting like this in an integrated polymeric ion exchange membrane, or pressing a membrane-electrode assembly between two silicon bipolar plates. Those electrodes were acquired commercially, also were fabricated in the laboratory, using adapted fabrication process from the existing fuel cell literature. The characterization of these fuel cells was done by means of the polarization curves, in which it was possible to observe the effect of ethanol concentration, temperature and the effect of cathode open for the air or with oxygen flow. The fuel cell with integrated membrane achieved open circuit potential of 150 mV and maximum power density of 18 uW/cm² at 275 uA/cm², while in a temporal test with a constant load was possible to observe stable operation for at least 30 minutes. In the cells with commercial MEAS was achieved maximum power densities in the order of 5,13 mW/cm² at 25 mA/cm² while with laboratory fabricated MEAS was achieved 1,23 mW/cm² at 8,8 mA/cm² heating the cell at 45°C.
84

Low Temperature Hermetically Sealed 3-D MEMS Device for Wireless Optical Communication

Agarwal, Rahul 01 June 2007 (has links)
Novel processes were developed that resulted in a self-packaged device during the system integration, along with a transparent lid for inspection or optical probing. A new process was developed for improving the verticality in Micro Electro Mechanical Systems (MEMS) structures using Deep Reactive Ion Etching (DRIE). A self-pattered, mask-less photolithography technique was developed to metallize these vertical structures while maintaining a transparent window, for packaging of various MEMS devices. The verticality and metallization coverage were evaluated by incorporating the MEMS structures into an optical Corner Cube Retroreflector (CCR). A low temperature, hermetic sealing technique was also developed using In-Au thermo-compression bonding at 160°C. Cross-shaped 550um deep vertical mirrors, with sidewall angles of 90.08° were etched with this new DRIE technique. This is the best reported sidewall angle for such deep structures. The typical scalloped DRIE sidewall roughness was reduced to 40nm using wet polishing. A bonded Pyrex wafer was used as the handle wafer during DRIE; it eventually forms the package window after DRIE. The metallized, vertical mirrors were bonded to a MEMS device chip to assemble and package the CCR. The MEMS device chip consisted of an array of torsion mirrors. The mirrors were designed to modulate at 6Vp-p - 20Vp-p, with the resonant frequencies ranging from 25 KHz - 50 KHz. The design and simulation results are presented. To test the hermetic seal, helium leak tests were performed on the packaged device. Leak rates of as low as 2.8x10-8 atm cc/s air were detected, which is better than the MIL-STD-883G of 5x10-8 atm cc/s air for a package volume of 7.8x10-3 CC. A microprocessor and temperature/humidity sensor was then integrated with the CCR to assemble a passive optical digital data communicator. A flexible circuit design and a folded packaging scheme were utilized to minimize the overall form factor. Flat, flexible polymer batteries were incorporated to reduce the thickness of the package to a few millimeters. The fully packaged sensor system was about 30mmx30mmx6mm. Recorder sensor data was transmitted to a remote location using the CCR, and those results are presented.
85

Design, fabrication, and testing of a variable focusing micromirror array lens

Cho, Gyoungil 29 August 2005 (has links)
A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs?? surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. The micromirror translation and rotation are plotted versus the applied voltage. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs?? design rules. Linnik interferometry is used to measure the translation, rotation, and flatness of a fabricated micromirror. The reflective type Fresnel lens is controlled by independent DC voltages of 16 channels with a 0 to 50V range, and translational and torsional stiffness are calibrated with measured data. The spot diameter of the point source by the fabricated and electrostatically controlled reflective type Fresnel lens is measured to test focusing quality of the lens.
86

Assembly of microsystems for optical and fluidic applications

Haasl, Sjoerd January 2005 (has links)
This thesis addresses assembly issues encountered in optical and fluidic microsystem applications. In optics, the first subject concerns the active alignment of components in optical fibersystems. A solution for reducing the cost of optical component assembly while retaining submicron accuracy is to integrate the alignment mechanism onto the optical substrate. A polymer V-shaped actuator is presented that can carry the weight of the large components - on a micromechanical scale - and that can generate movement with six degrees of freedom. The second subject in optics is the CMOS-compatible fabrication of monocrystalline silicon micromirror arrays that are intended to serve as CMOS-controlled high-quality spatial light modulators in maskless microlithography systems. A wafer-level assembly method is presented that is based on adhesive wafer bonding whereby a monocrystalline layer is transferred onto a substrate wafer in a CMOS-compatible process without needing bond alignment. In fluidics, a hybrid assembly method is introduced that combines two separately micromachined structures to create hotwire anemometers that protrude from a surface with minimum interference with the air flow. The assembled sensor enables one to make accurate time-resolved measurements of the wall shear stress, a quantity that has previously been hard to measure with high time resolution. Also in the field of hotwire anemometers, a method using a hotwire anemometer array is presented for measuring the mass flow, temperature and composition of a gas in a duct. In biochemistry, a bio-analysis chip is presented. Single nucleotide polymorphism scoring is performed using dynamic allele-specific hybridization (DASH). Using monolayers of beads, multiplexing based on single-bead analysis is achieved at heating rates more than 20 times faster than conventional DASH provides. Space and material e±ciency in packaging are the focus of the other two projects in fluidics. The first introduces an assembly based on layering conductive adhesives for the fabrication of miniature polymer electrolyte membrane fuel cells. The fuel cells made with this low-cost approach perform among the best of their type to date. The second project concerns a new cross-flow microvalve concept. Intended as a step towards the mass production of large-flow I/P converters, the silicon footprint area is minimized by an out-of-plane moving gate and in-plane, half-open pneumatic channels. / QC 20101019
87

Experimental Study of Micro-/ Nano-Scale Cutting of Aluminum 7075 and P20 Mold Steel

Ng, Chee Keong 24 March 2005 (has links)
The marked increase in demand for miniaturized consumer products in a broad range of potential applications including medical, telecommunication, avionics, biotechnology and electronics is a result of advancements in miniaturization technologies. Consequently, engineering components are being drastically reduced in size. This coupled with the quest for higher quality components, has imposed more stringent requirements on manufacturing processes and materials used to produce micro components. Hence, the development of ultra precision manufacturing processes to fabricate micro-scale features in engineering products has become a focal point of recent academic and industrial research. However, much attention in the area of micro-manufacturing, especially micro-mechanical machining, has been devoted to building miniature machine tools with nanometer positioning resolution and sub-micron accuracy. There is lack of fundamental understanding of mechanical machining at the micro and nano scale. Specifically, basic understanding of chip formation mechanism, cutting forces, size-effect in specific cutting energy, and machined surface integrity in micro and nano scale machining and knowledge of how these process responses differ from those in macro-scale cutting are lacking. In addition, there is a lack of investigations of micro and nano scale cutting of common engineering materials such as aluminum alloys and ferrous materials. This thesis proposes to advance the understanding of machining at the micro and nano scale for common engineering alloys. This will be achieved through a series of systematic micro and nano cutting experiments. The effects of cutting conditions on the machining forces, chip formation and machined surface morphology in simple orthogonal micro-cutting of a ferrous, P20 mold steel (30 HRC), and a non-ferrous structural alloy, aluminum AL7075 (87 HRB), used in the mold making and rapid prototyping industry will be studied. The data will also be compared with data obtained from conventional macro-scale cutting. In addition, the applicability of conventional metal cutting theory to micro and nano cutting test data will be examined. The analysis will provide a better understanding of machining forces, chip formation, and surface generation in micro and nano scale cutting process and how it differs from macro-scale cutting.
88

Empirical analysis of cutting force constants in micro end milling operations

Newby, Glynn 25 May 2005 (has links)
The development of miniaturized technologies has become a global phenomenon that continues to make an impact across a broad range of applications that encompasses many diverse fields and industries including telecommunications, portable consumer electronics, defense, and biomedical. Subsequently this trend has caused more and more interest in the issues involved in the design, development, operation and analysis of equipment and processes for manufacturing micro components. One technology used to create these miniaturized components is micro end milling. The cutting forces of the micro end milling process provide vital information for the design, modeling, and control of the machining process. To gain an understanding of forces in micro end milling operations, a model of average chip thickness is derived and the differences between conventional end milling and micro end milling are enumerated. From the experimental results, empirical models for specific cutting constants were derived and compared the generally accepted forms for conventional end milling operations. These models provide a tool for the estimation of cutting forces in micro end milling.
89

Some Investigations of Scaling Effects in Micro-Cutting

Subbiah, Sathyan 13 October 2006 (has links)
The scaling of specific cutting energy is studied when micro-cutting ductile metals. A unified framework for understanding the scaling in specific cutting energy is first presented by viewing the cutting force as a combination of constant, increasing, and decreasing force components, the independent variable being the uncut chip thickness. Then, an attempt is made to isolate the constant force component by performing high rake angle orthogonal cutting experiments on OFHC Copper. The data shows a trend towards a constant cutting force component as the rake angle is increased. In order to understand the source of this constant force component the chip-root is investigated. By quickly stopping the spindle at low cutting speeds, the chip is frozen and the chip-workpiece interface is examined in a scanning electron microscope. Evidence of ductile tearing ahead of the cutting tool is seen at low and high rake angles. At higher cutting speeds a quick-stop device is used to obtain chip-roots. These experiments also clearly indicate evidence of ductile fracture ahead of the cutting tool in both OFHC Copper and Al-2024 T3. To model the cutting process with ductile fracture leading to material separation the finite element method is used. The model is implemented in a commercial finite element software using the explicit formulation. Material separation is modeled via element failure. The model is then validated using the measured cutting and thrust forces and used to study the energy consumed in cutting. As the thickness of layer removed is reduced the energy consumed in material separation becomes important. Simulations also show that the stress state ahead of the tool is favorable for ductile fracture to occur. Ductile fracture in three locations in an interface zone at the chip root is seen while cutting with edge radius tool. A hypothesis is advanced wherein an element gets wrapped around the tool edge and is stretched in two directions leading to fracture. The numerical model is then used to study the difference in stress state and energy consumption between a sharp tool and a tool with a non-zero edge radius.
90

Predictive Modeling for Ductile Machining of Brittle Materials

Venkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.

Page generated in 0.0775 seconds