• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 25
  • 12
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Études expérimentales de dispositifs intégrés à base de micro-résonateurs à mode de galerie en verres actifs / Experimental studies of integrated devices based on whispering gallery mode micro-resonators in active glasses

Rasoloniaina, Alphonse 14 February 2014 (has links)
Les microrésonateurs à mode de galerie passifs à base de cristal ou de verre fabriqués par la méthode de fusion possèdent un facteur de qualité limité à quelques 10E8. Ceci est généralement dû à la contamination de la surface du résonateur lors de sa fusion. Dans ces travaux, nous proposons de contourner cette limitation en utilisant des microrésonateurs actifs pour compenser les pertes. Afin de caractériser les microrésonateurs actifs de très haut facteur de qualité ainsi obtenu, nous nous appuyons sur la méthode CRDM (Cavity Ring Down Measurement). Cette méthode interférométrique est d'une part bien adaptée à la caractérisation de résonateurs de très haut facteur de qualité et d'autre part elle permet de remonter de manière univoque aux facteurs de qualité intrinsèque Qo et extrinsèque Qe du résonateur. Dans un régime de compensation de pertes, nous avons pu atteindre tous les régimes de couplage et obtenus des facteurs de qualité intrinsèques excédant les 10E10. En régime d'amplification sélective, nous avons démontré expérimentalement que l'on pouvait obtenir des gains élevés allant jusqu'à 33 dB et des retards de groupe excédant 2,3 µs dans ces microrésonateurs actifs. Ces microrésonateurs de très haut facteur de qualité et de très haute finesse peuvent présenter un couplage modal se manifestant par un doublet de résonances. Une confrontation théorie/expérience avec la méthode CRDM permet de mesurer un écart très faible entre les doublets. Par ailleurs, ces microrésonateurs présentant un fort confinement spatial et une forte surtension, sont propices à l'observation d'effets non-linéaires. Une modélisation intégrant l'effet thermique et l'effet Kerr a été réalisée. Une confrontation théorie/expérience nous a permis d'estimer la puissance réellement injectée dans le mode ainsi qu'à estimer le volume du mode. / Glass-based whispering gallery mode (WGM) microresonators are easy to produce by melting techniques. However, they suffer from surface contamination which limits their long term quality factor to only about 10E8. In this thesis, we show that an optical gain provided by erbium ions can compensate for residual losses. The optical characterization method is based on frequency-swept “Cavity-Ring-Down-Measurement”. This method can fully describe the linear properties of microcavities such as coupling regime and group delay. In compensation loss regime we demonstrate that it is possible to control the coupling regime of an ultrahigh Q-factor microresonator from undercoupling to spectral selective amplification. Under the selective amplification regime, we obtain an internal Q-factor exceding 10E10. In selective amplification, we experimentally show that it is possible to obtain high amplification up to 33 dB and a high group delay. The microresonators with high Q-factor and high finesse could give rise to a modal coupling which exhibits a splitting of the resonance in the transmission. A characterization of this phenomenon with the cavity ring down method was realized. Moreover, these microresonators, are conducive to the non-linear effect observation. A model incorporating the thermal effect and the Kerr effect has been achieved. Confrontation between theory and experiment allowed us to estimate the real optical power injected into the mode as well as estimating the mode volume.
22

Chemical microsystem based on integration of resonant microsensor and CMOS ASIC

Demirci, Kemal Safak 06 July 2010 (has links)
The main topic of this thesis is the development of a chemical microsystem based on integration of a silicon-based resonant microsensor and a CMOS ASIC for portable sensing applications. Cantilever and disk-shape microresonators have been used as mass-sensitive sensors. Based on the characteristics of the microresonators, CMOS integrated interface and control electronics have been implemented. The CMOS ASIC utilizes the self-oscillation method, which incorporates the microresonator in an amplifying feedback loop as the frequency determining element. In this manner, the ASIC includes a main feedback loop to sustain oscillation at or close to the fundamental resonance frequency of the microresonator. For stable oscillation, an automatic gain control loop regulates the oscillation amplitude by controlling the gain of the main feedback loop. In addition, an automatic phase control loop has been included to adjust the phase of the main feedback loop to ensure an operating point as close as possible to the resonance frequency, resulting in improved frequency stability. The CMOS chip has been interfaced to cantilever and disk-shape microresonators and short-term frequency stabilities as low as 3.4×10-8 in air have been obtained with a 1 sec gate time. The performance of the implemented microsystem as a chemical sensor has been evaluated experimentally with microresonators coated with chemically sensitive polymer films. With a gas-phase chemical measurement setup constructed in this work, chemical measurements have been performed and different concentrations of VOCs, such as benzene, toluene and m-xylene have been detected with limits of detection of 5.3 ppm, 1.2 ppm and 0.35 ppm, respectively. To improve the long-term stability in monitoring applications with slowly changing analyte signatures, a method to compensate for frequency drift caused by environmental disturbances has been implemented on the CMOS chip. This method uses a controlled stiffness modulation generated by a frequency drift compensation circuit to track the changes in the resonator's Q-factor in response to variations in the environmental conditions. The measured Q-factor is then used to compensate for the frequency drift using an initial calibration step. The feasibility of the proposed method has been verified experimentally by compensating for temperature-induced frequency drift during gas-phase chemical measurements.
23

The taiji and infinity-loop microresonators: examples of non-hermitian photonic systems

Franchi, Riccardo 01 June 2023 (has links)
This thesis theoretically and experimentally studies the characteristics of integrated microresonators (MRs) built by passive (no gain) and non-magnetic materials and characterized by both Hermitian and non-Hermitian Hamiltonians. In particular, I have studied three different microresonators: a typical Microring Resonator (MR), a Taiji Microresonator (TJMR), which consists of a microresonator with an embedded S-shaped waveguide, and a new geometry called the Infinity-Loop Microresonator (ILMR), which is characterized by a microresonator shaped like the infinity symbol coupled at two points to the bus waveguide. To get an accurate picture of the three devices, they were modeled using both the transfer matrix method and the temporal coupled mode theory. Neglecting propagation losses, the MR is described by a Hermitian Hamiltonian, while the TJMR and the ILMR are described by a non-Hermitian one. An important difference between Hermitian and non-Hermitian systems concerns their degeneracies. Hermitian degeneracies are called Diabolic Points (DPs) and are characterized by coincident eigenvalues and mutually orthogonal eigenvectors. In contrast, non-Hermitian degeneracies are called Exceptional Points (EPs). At the EP, both the eigenvalues and the eigenvectors coalesce. The MR is at a DP instead, and the TJMR and the ILMR are at an EP. Since the TJMR and ILMR are at an EP, they have interesting features such as the possibility of being unidirectional reflectors. Here, it is shown experimentally how in the case of the TJMR this degeneracy can also be used to break Lorentz reciprocity in the nonlinear regime (high incident laser powers), discussing the effect of the Fabry-Perot of the bus waveguide facets. The effect of backscattering, mainly due to the waveguide surface-wall roughness, on the microresonators is also studied. This phenomenon induces simultaneous excitation of the clockwise and counterclockwise modes, leading to eigenvalue splitting. This splitting makes the use of typical quality factor estimation methods unfeasible. To overcome this problem and mitigate the negative effects of backscattering, a new experimental technique called interferometric excitation is introduced. This technique involves coherent excitation of the microresonator from both sides of the bus waveguide, allowing selective excitation of a single supermode. By adjusting the relative phase and amplitude between the excitation fields, the splitting in the transmission spectrum can be eliminated, resulting in improved quality factors and eigenvalue measurements. It is shown that this interferometric technique can be exploited under both stationary and dynamic conditions of time evolution. The thesis also investigates the sensing performance of the three microresonators as a function of a backscattering perturbation, which could be caused, for example, by the presence of a molecule or particle near the microresonator waveguide. It is shown that the ILMR has better performance in terms of responsivity and sensitivity than the other two microresonators. In fact, it has both the enhanced sensitivity due to the square root dependence of the splitting on the perturbation (characteristic of EPs) and the ability to completely eliminate the region of insensitivity as the backscattering perturbation approaches zero, which is present in both the other two microresonators. To validate the models used, they were compared with experimental measurements both in the linear regime and, for TJMR, also in the nonlinear regime, with excellent agreement.
24

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 15 September 2015 (has links) (PDF)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.
25

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 12 August 2015 (has links)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.

Page generated in 0.0512 seconds