• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microscopie polarimétrique du collagène de type I par génération de second harmonique dans des systèmes modèles et tissus

Aït-Belkacem, Dora 18 November 2011 (has links)
La génération de second harmonique (SHG) est un processus non-linéaire qui se produit dans des structures non-centrosymétriques, comme c'est le cas de certains matériaux cristallins ou biologiques. Il consiste à coupler deux champs à la même fréquence pour générer un photon à la fréquence double. La manipulation de la polarisation des champs incidents donne accès à des informations microscopiques et structurales de l'échantillon. De plus, l'utilisation d'une détection polarisée permet de mettre à jour des effets physiques dans les assemblages moléculaires biologiques.Dans ces travaux de thèse, nous nous intéressons principalement à l'étude des fibres de collagène I en SHG polarisée dans des échantillons modèles et des tissus. Nous étendons cette étude à la compréhension de l'interaction des fibres avec leur environnement cellulaire pour ensuite, aborder la problématique des tissus cancéreux. Enfin, nous proposons différents modèles microscopiques de la structure du collagène, évalués par une méthode basée sur la décomposition en série de Fourier du signal polarisé, pour apporter un diagnostic quantitatif sur des échantillons biologiques. / Second harmonic generation (SHG) is a non-linear process which consists in coupling two photons at the same frequency to generate one photon at the twice frequency. It generally occurs in non-centrosymmetric samples such as crystals or molecular assemblies. The manipulation of the optical field polarization gives access to structural and microscopic informations. Moreover, using polarized detection allows to determine physical effects in molecular assemblies.In this Phd thesis, we are particulary interested in studying polarized SHG signals from collagen type I fibers in model samples and tissues. We extend our work to the investigation of the interaction of the fibers with their cellular environment. We also address the problematic of cancerous tissues.Finally, we propose several models for the microscopic structure of collagen, evaluated by a method based on the Fourier decomposition of the polarized SHG signal, to provide a quantitative diagnosis of biological samples.
2

Génération de seconde harmonique par le collagène et application à l'étude de fibroses par microscopie multiphoton.

Pena, Ana-Maria 14 September 2006 (has links) (PDF)
La microscopie multiphoton est une technique d'imagerie optique dont une des caractéristiques les plus remarquables est de fournir une information micrométrique en profondeur dans les tissus intacts. Un autre intérêt est la possibilité de visualiser la structure d'une cellule ou d'un tissu en utilisant des sources de contraste endogènes qui permettent une imagerie très peu invasive. De plus, divers modes de contrastes tels que la fluorescence excitée à deux photons (2PEF), la génération de seconde harmonique (SHG) ou la génération de troisième harmonique (THG) sont facilement combinables, et les applications de la microscopie multiphoton sont ainsi nombreuses et variées, dans des domaines comme les neurosciences, la cancérologie, l'embryologie,... Cependant, des progrès sont encore nécessaires dans la compréhension des contrastes optiques non-linéaires endogènes observés dans les tissus. Dans ce contexte, la génération de seconde harmonique par le collagène fibrillaire soulevait différentes questions au début de ce travail, notamment sur la spécificité de la SHG en fonction du type de collagène et sur le rôle de sa structure chirale en triple hélice dans la forte amplitude des signaux observés. L'étude du collagène est particulièrement intéressante car il représente 30 % du contenu total du corps humain en protéines. Constituant principal de la matrice extracellulaire d'une grande variété de tissus et d'organes, le collagène est impliqué dans tout remodelage de la matrice extracellulaire et dans de nombreuses pathologies, mais on manque actuellement d'outils performants pour visualiser son architecture tridimensionnelle à l'échelle micrométrique. Dans ce contexte, la microscopie SHG est un outil prometteur pour visualiser la distribution du collagène dans les tissus. Ce travail de thèse a débuté avec des expériences de génération de seconde harmonique en surface résolue en polarisation sur des films minces de molécules de collagène de type I et IV, qui nous ont permis de démontrer que la microscopie SHG est une sonde de l'organisation macromoléculaire du collagène et non pas du type de collagène. Nous avons appliqué ensuite ces résultats à l'étude de la fibrose collagénique pulmonaire et rénale dans des modèles murins, une accumulation pathologique de collagène fibrillaire qui peut conduire à une insuffisance rénale terminale ou à une insuffisance respiratoire souvent létale à terme. Nous avons démontré que la microscopie multiphoton permet de visualiser la morphologie de ces tissus, de mettre en évidence toutes les caractéristiques de ces pathologies et d'évaluer quantitativement le remodelage de la matrice extracellulaire au cours de l'évolution de la fibrose. Finalement, nous avons proposé des scores de fibrose basés sur des densités volumiques de pixels SHG qui nous ont permis d'apprécier le rôle de certains facteurs (cellules/enzymes d'assemblage) responsables de la fibrose. Ce travail devrait ainsi permettre de proposer de nouvelles approches thérapeutiques pour ces pathologies fibrosantes.
3

Approche multimodale par biophotonique pour l’étude des modifications du collagène de type I au cours du vieillissement. / Biophotonic multimodal approach for investigating modifications of type I collagen during aging

Guilbert, Marie 21 December 2012 (has links)
Le collagène de type I représente la protéine structurale la plus abondante au sein de l'organisme. Au cours du vieillissement, cette protéine à longue demi-vie biologique subit des modifications structurales et fonctionnelles qui affectent les propriétés biomécaniques des tissus. L'un des mécanismes majeurs est la réaction de glycation non enzymatique qui conduit à la formation des produits de glycation avancée (AGEs). Les AGEs entraînent une augmentation de la rigidité du collagène I qui se traduit par une désorganisation des réseaux fibrillaires et une perte d'élasticité tissulaire au cours du vieillissement. Dans cette étude, nous avons développé diverses approches biophotoniques afin d'étudier l'impact du vieillissement sur le collagène de type I, de façon rapide, directe et non destructive. Par microspectroscopies vibrationnelles infrarouge (IR) et Raman, des marqueurs spectroscopiques liés à l'accumulation des AGEs ont été mis en évidence au niveau des lyophilisats de collagènes de type I glyqués in vitro. Ces marqueurs sont retrouvés au niveau des lyophilisats de collagènes de type I d'âges différents et permettent une bonne discrimination des échantillons en fonction de l'âge. La bande spécifique des glucides apparaît ainsi comme un bon marqueur spectroscopique de la glycation, corrélant avec le taux d'AGEs fluorescents. Les pics spécifiques des résidus de proline permettent également de mettre en évidence les changements conformationnels dans la protéine dus à l'augmentation des liaisons croisées. L'imagerie IR appliquée aux tissus murins d'âges différents permet de retrouver ces différences spectrales in situ en fonction de l'âge. L'impact du vieillissement sur le comportement structural des fibrilles de collagène I a été étudié par microscopie multiphoton de second harmonique résolue en polarisation (PSHG). A l'échelle de la fibrille isolée, le vieillissement entraîne une perte de la complexité d'assemblage des fibrilles et une diminution de leur diamètre. L'effet de l'âge sur les propriétés biomécaniques du collagène de type I a été évalué sur des modèles de matrices 3D de collagène de type I, en présence de fibroblastes, par une technique de déformation des matrices et par tomographie à cohérence optique (OCT). Les résultats montrent une diminution du module d'élasticité et de la contraction du collagène avec le vieillissement, en accord avec les données de l'étude cinétique de la fibrillogenèse. Cette étude démontre la complémentarité des techniques biophotoniques employées et leur potentiel dans la caractérisation moléculaire et morphologique des effets de l'âge sur le collagène de type I, de manière directe, non invasive et multi-échelles. / Type I collagen represents the most abundant structural protein in the human body. During aging, this long half-life protein undergoes structural and functional changes which affect the biomechanical properties of tissues. One of the main mechanisms is the non enzymatic glycation leading to the formation of the so-called advanced glycation endprodutcs (AGEs). AGEs give rise to an increase of collagen I rigidity which is responsible for the fibrillar network disorganization and the loss of tissue elasticity with age. In this work, we applied various biophotonic approaches for studying the impact of aging on type I collagen, in a rapid, direct and non destructive way. Using vibrational infrared (IR) and Raman microspectroscopies, we highlighted spectroscopic markers linked to AGEs accumulation in freeze-dried samples of in vitro-glycated type I collagens. These markers were also detected in different-age freeze-dried type I collagens and allowed a clear discrimination of samples as a function of age. The band assigned to carbohydrates appears like a specific spectroscopic marker of glycation, in correlation with the fluorescent-AGEs quantification. The specific peaks for proline residues allow highlighting conformational changes in protein backbone due to a higher cross-linking. IR imaging applied to tissues from different-age rats can detect these spectral differences in situ as a function of age. Impact of aging on the structural behaviour of type I collagen fibrils was studied by polarization resolved second harmonic generation (PSHG) multiphoton microscopy. At the scale of single fibril, aging gives rise to a loss of fibril assembly complexity and a decrease of fibril diameter. Age effect on biomechanical properties of type I collagen was evaluated on 3D type I collagen matrice models in the presence of fibroblasts, using an indentation technique and optical coherence tomography (OCT). Results show a decrease of both elastic modulus and collagen contraction with aging, in agreement with kinetics of the fibrillogenesis process. This study demonstrates the complementarity of the different biophotonic techniques used in our multimodal approach and their potential for characterizing age effects on type I collagen, in a direct, non invasive and multi-scale way.
4

Impact des forces de tension sur le phénotype hépatocytaire in vitro : caractérisation de la matrice de collagène dans la fibrose hépatique par microscopie SHG / Impact of tensile strength on hepatocyte phenotype in vitro : characterization of collagen matrix in liver fibrosis by SHG microscopy

Bomo, Jérémy 15 December 2014 (has links)
La fibrose hépatique est un problème de santé publique. Cette pathologie est caractérisée par une accumulation excessive de matrice extracellulaire, composée principalement de collagène, augmentant la rigidité du foie. Environ 90% des hépatocarcinomes se développent sur un foie fibrotique / cirrhotique, laissant présager une relation entre la rigidité tissulaire et le développement tumoral. Pour étudier le rôle des forces exercées par la matrice extracellulaire sur le phénotype des cellules hépatiques, nous avons développé un modèle de culture 3D de cellules hépatiques dans des gels de collagène de rigidités variables. Dans ces conditions, les cellules hépatiques présentent une forte prolifération et un maintien de la différenciation dans les matrices les plus rigides. En parallèle, les cellules hépatiques transformées peuvent modifier la matrice de collagène pour former des signatures de collagène TACS (Tumor Associated Collagen Signatures). Une analyse des voies de signalisation impliquées dans la formation des TACS 3 nous a permis de déterminer 2 voies indispensables pour ces mécanismes: MEK/ERK et MLCK. Le bon maintien des fonctions différenciées et de biotransformation des cellules hépatiques font des cultures 3D en gel de collagène un excellent modèle pour des applications en biotechnologie. Nous avons également développé une technique de quantification standardisée et automatisée du collagène, dans un modèle murin de fibrose hépatique, par utilisation de la microscopie SHG, qui permet de détecter de faibles variations de quantité de collagène. Cette technique permet également de caractériser qualitativement, après analyse d'images, le collagène et de renforcer la discrimination entre les différents stades fibrotiques. La caractérisation des cross-links de collagène, par cette approche, est actuellement en cours d'étude et permettrait d'appréhender les capacités de réversion. / Liver fibrosis is a real public health problem. This pathology is characterized by an excessive accumulation of extracellular matrix, mainly composed of collagen, increasing liver rigidity. Approximately 90% of hepatocellular carcinomas develop from a fibrotic/cirrhotic liver, suggesting a relationship between tissue rigidity and tumor development. To investigate the role of stiffness on the hepatic phenotype, we have developed a 3D culture model of collagen gels of varying stiffness. Our results show a better survival, an increase of proliferation and differentiation of liver cells in rigid matrices. In addition, the cells are able to modify the collagen matrix and to form collagen signatures TACS (Tumor Associated Collagen Signatures). An analysis of the signaling pathways involved in the formation of TACS 3 allowed us to determine that 2 pathways are important for these mechanisms: MEK/ERK and MLCK. The high level of differentiated functions and biotransformation of the hepatic cells make 3D collagen cultures an excellent model for applications in biotechnology. Using the SHG microscopy, we have also developed a standardized and automated quantification of collagen to detect small amount of collagen in a mouse liver fibrosis model. This technique allows us to characterize qualitatively the collagen and to strengthen the discrimination between fibrotic scores. The characterization of the collagen cross-links by this approach is under study and would allow to study the reversion capacity.

Page generated in 0.044 seconds