• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 15
  • 2
  • 1
  • Tagged with
  • 38
  • 10
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Serina proteinases digestivas de insetos-modelo / Digestive serine proteinases of model insects

Tamaki, Fabio Kendi 29 March 2011 (has links)
Tripsinas e quimotripsinas, enzimas pertencentes à classe das serina proteinases, são as principais enzimas proteolíticas digestivas presentes no intestino médio de insetos de diversas ordens. Entretanto, enzimas de diferentes insetos possuem propriedades cinéticas distintas, sendo os motivos dessas diferenças especulados. Precipitações por sulfato de amônio das tripsinas de Tenebrio molitor, Diatraea saccharalis e Spodoptera frugiperda mostram que insetos Lepidópteros possuem serina proteinases mais hidrofóbicas, que foi confirmado através de cromatografias de interação hidrofóbica e da análise de acesso do solvente às superfícies protéicas em modelagens tridimensionais de seqüências. Tal fato está relacionado à formação de oligômeros e resistência a defesas de plantas. Inativações por TPCK mostram que quimotripsinas digestivas de S. frugiperda, inseto polífago, reagem duas ordens de grandeza mais lentamente e possui um deslocamento do pH ótimo de modificação em mais de uma unidade quando comparada com dos outros dois organismos, fato relacionado à resistência a cetonas presentes em diversas plantas. A tripsina digestiva de Periplaneta americana foi purificada e microsseqüenciada, resultando na seqüência VSPAFSYGTG e associada a um alérgeno (denominado PaTry), expresso nos cecos e na região anterior do ventrículo. O anticorpo anti-tripsina de M. domestica reconheceu apenas uma banda no intestino de P. americana e foi utilizado para imunocitolocalizar tripsinas nos tecidos epiteliais, demonstrando que esta é secretada por exocitose nos cecos e na região anterior do ventrículo, como esperado. Por último, a atividade majoritária de quimotripsina se localiza surpreendentemente na região posterior do ventrículo de M. domestica. Apesar disso, apenas 28% dessa atividade é perdida através das fezes, pois 31% da atividade enzimática se encontra firmemente aderida à membrana, e 41% na fração celular solúvel (associada ao glicocálice), sendo a atividade solúvel luminal correspondente a apenas 12%, indicando a existência de pelo menos duas espécies moleculares distintas, uma solúvel e uma aderida à membrana, comprovado inativações térmicas das duas atividades (solúvel e aderida à membrana) na presença e na ausência de Triton X-100, sendo que a atividade aderida à membrana apresentou uma maior meia vida com uma cinética de primeira ordem nos dois casos. Ensaio em gel demonstrou que o homogeneizado possui apenas uma banda de atividade quimotríptica de 30 kDa. A atividade solúvel majoritária foi purificada até a homogeneidade, apresentando uma banda de 30 kDa em SDS-PAGE, pH ótimo de 7,4 e é 90% inativada por TPCK 0,1 mM em pH 8,5 em 15 min. Ela prefere substratos contendo Phe em P1, apesar clivar substratos contendo Tyr e Leu. Uma seqüência contígua similar a quimotripsina foi obtida a partir de uma biblioteca de cDNA de intestino médio de M. domestica, formada por 71 ESTs (de 826 seqüências obtidas ao acaso), indicando que esta deve corresponder à atividade majoritária. Essa seqüência, denominada MdChy1, prediz uma proteína madura de 28.639,2 Da e foi clonada e expressa de maneira recombinante em E. coli BL21 (DE-3) Star, sendo utilizada para produção de anticorpos policlonais em coelhos, que reconheceram uma banda de 30 kDa no ventrículo anterior e posterior, mas não no médio. Esses anticorpos foram utilizados para imunomarcações e reconheceram proteínas no lúmem, nas microvilosidades e em pequenas vesículas do epitélio, demonstrando que a quimotripsina é secretada ao lúmem por exocitose e indicando que o MdChy1 corresponde à atividade majoritária de quimotripsina. Análises de expressão em M. domestica indicam a existência de dois conjuntos de serina proteinases digestivas, um expresso na região anterior e um segundo na região posterior do ventrículo. O MdChy1 é expresso na região posterior, local em que se encontra a atividade majoritária de quimotripsina. Uma reconstrução filogenética dos genes similares a quimotripsinas de Drosophila melanogaster e de M. domestica demonstram que a MdChy1 se agrupa com genes expressos no intestino médio, portanto, com função digestiva. / Trypsins and chymotrypsins, serine proteinases enzymes, are the major proteolytic activities present in the midgut of insects. However, enzymes obtained from different insects present different kinetic properties, and the reason for the differences are speculated. Trypsin precipitation of Tenebrio molitor, Diatraea saccharalis and Spodoptera frugiperda with ammonium sulfate showed that Lepidopteran insects possess serine proteinases with a higher superficial hydrophobicity than insects belonging to other orders, which may be associated to oligomerization of enzymes and resistance to inhibitors present in the food. This was confirmed by hydrophobic interaction chromatography and analysis of solvent access to serine proteinases surface. Moreover, inactivations of chymotrypsins by TPCK showed that S. frugiperda chymotrypsins react one order slower and has an optimum pH of modification more than 1 unit higher than chymotrypsins of D. saccharalis and T. molitor, which was related with the resistance of the enzyme to the presence of plant ketones, since S. frugiperda is a polyphagous organism. The digestive trypsin from Periplaneta americana midgut was purified microssequenced, resulting in the sequence VSPAFSYGTG, coincident to the MPA3 allergen (named PaTry), which is expressed in the caeca and anterior ventriculus. Western blot using M. domestica trypsin antisera recognized a single band, and immunohistochemical assays using this antisera showed that the P. americana trypsin is secreted by exocitosys in caeca and anterior ventriculus, which is coincident to the expression data. Although the major M. domestica chymotrypsin activity is present in the posterior ventriculus, only 28% of the activity is lost in feces, because 31% of activity is membrane-bound, and 41% is in the cellular soluble fraction (glycocalix-associated), and only 12% of total activity is soluble in the lumen, indicating the existence of at least two molecular species of chymotrypsins. Thermal inactivations of both activities (soluble and membrane-bound) showed that they may represent two different molecular enzymes, since the membrane-bound activity has a higher half-life than the soluble both in the presence and in the absence of Triton X-100. Both activities presented a linear first-order inactivation kinetic. In gel assays showed the presence of only one activity band in the midgut of 30 kDa. The major soluble activity was purified through one affinitychromatography, and active fractions presented a single 30 kDa band, a optimum pH of 7.4 and was 90% modified by TPCK 0.1 mM at pH 8.5 during 15 min. This enzyme preferentially cleaves substrates containing Phe residues in P1, although it cleaves substrates containing Tyr and Leu. A contig of a chymotrypsin-like sequence was randomly obtained from a cDNA library of M. domestica midguts from 71 ESTs (a total of 826 sequences), indicating that this sequence corresponds to the major activity present in the lumen. This sequence, named MdChy1, predicted a protein with 28639.2 Da which was cloned, recombinantly expressed in E. coli BL21 (DE-3) Star, this recombinant MdChy1 was used to raise polyclonal antibodies in rabbit. A western blot using this antisera recognised a single band in the anterior and posterior ventriculus, but not in the middle. Imunno-gold labeling of epithelium marked proteins in the lumen, at the microvilli and inside small vesicles, demonstrating that chymotrypsin is secreted through exocytosis in M. domestica and reinforcing that MdChy1 corresponds to the major chymotryptic activity found in the midgut. A semi-quantitative RT-PCR of M. domestica serine proteinase-like genes demonstrated that there are two set of genes, one expressed in the anterior and another in the posterior ventriculus, as visualized in western blot. MdChy1 is expressed in the posterior ventriculus, where the major chymotryptic activity is found. A phylogenetic reconstruction of Drosophila melanogaster chymotrypsin-like sequences and M. domestica chymotrypsins showed that MdChy1 branched with sequences expressed in midgut, thus coding proteins involved in digestion.
12

Genetic studies of endocrine abdominal tumors

Hessman, Ola January 2001 (has links)
<p>Pancreatic endocrine tumors (PETs) occur sporadically or in the familial multiple endocrine neoplasia type 1 (MEN1) syndrome, whereas midgut carcinoids are nonfamilial, malignant endocrine tumors of the intestine. For these tumor entities morphological criteria are of limited use for prognostic prediction and selection of treatment. Genetic characterization may give additional information of clinical use and reveal pathways involved in tumor development.</p><p>Molecular genetic alterations in sporadic and MEN1-associated PETs and midgut carcinoids were studied with LOH and mutational analysis. In addition, immunohistochemistry was used to clarify gene expression. Detected genetic aberrations were correlated to the disease course of individual patients.</p><p>Somatic mutations of the<i> MEN1</i> gene at chromosome <i>11q13</i> were detected in 1/3 of sporadic PETs<i>. </i>Moreover, LOH was found in 70% of the lesions. All tumors with somatic <i>MEN1</i> mutations displayed loss of the remaining allele showing that the <i>MEN1</i> gene is involved in development of sporadic PETs.</p><p> Sporadic and MEN1 PETs were analyzed for LOH at <i>3p,</i> <i>11q13</i> and <i>18q</i>. A relation of LOH at <i>11q13</i> and <i>3p</i> to malignancy was found for the sporadic tumors. None of the benign tumors (all of them insulinomas) had allelic loss at <i>3p</i> or <i>11q13</i>, versus 92 % (p<0.01) of the malignant tumors (including malignant insulinomas). 1/4 of both sporadic and MEN1 lesions displayed LOH at <i>18q</i>, without altered <i>Smad4/DPC4</i>.</p><p>Genome-wide LOH screening of MEN1 PETs revealed multiple allelic deletions without general correlation to tumor size or malignancy. All tumors displayed LOH at the <i>MEN1 </i>locus, and 30% on chromosomes 3, 6, 8, 10, 18 and 21. Intratumoral heterogeneity was revealed, with chromosome 6 and 11 deletions in most tumor cells. Chromosome 6 deletions were mainly found in lesions from patients with malignant features. </p><p>A similar genome-wide LOH screening was performed on midgut carcinoids. Deletions at chromosome <i>18q</i> were found in 88% of the tumors indicating a potential tumor suppressor locus.</p>
13

Genetic studies of endocrine abdominal tumors

Hessman, Ola January 2001 (has links)
Pancreatic endocrine tumors (PETs) occur sporadically or in the familial multiple endocrine neoplasia type 1 (MEN1) syndrome, whereas midgut carcinoids are nonfamilial, malignant endocrine tumors of the intestine. For these tumor entities morphological criteria are of limited use for prognostic prediction and selection of treatment. Genetic characterization may give additional information of clinical use and reveal pathways involved in tumor development. Molecular genetic alterations in sporadic and MEN1-associated PETs and midgut carcinoids were studied with LOH and mutational analysis. In addition, immunohistochemistry was used to clarify gene expression. Detected genetic aberrations were correlated to the disease course of individual patients. Somatic mutations of the MEN1 gene at chromosome 11q13 were detected in 1/3 of sporadic PETs. Moreover, LOH was found in 70% of the lesions. All tumors with somatic MEN1 mutations displayed loss of the remaining allele showing that the MEN1 gene is involved in development of sporadic PETs. Sporadic and MEN1 PETs were analyzed for LOH at 3p, 11q13 and 18q. A relation of LOH at 11q13 and 3p to malignancy was found for the sporadic tumors. None of the benign tumors (all of them insulinomas) had allelic loss at 3p or 11q13, versus 92 % (p&lt;0.01) of the malignant tumors (including malignant insulinomas). 1/4 of both sporadic and MEN1 lesions displayed LOH at 18q, without altered Smad4/DPC4. Genome-wide LOH screening of MEN1 PETs revealed multiple allelic deletions without general correlation to tumor size or malignancy. All tumors displayed LOH at the MEN1 locus, and 30% on chromosomes 3, 6, 8, 10, 18 and 21. Intratumoral heterogeneity was revealed, with chromosome 6 and 11 deletions in most tumor cells. Chromosome 6 deletions were mainly found in lesions from patients with malignant features. A similar genome-wide LOH screening was performed on midgut carcinoids. Deletions at chromosome 18q were found in 88% of the tumors indicating a potential tumor suppressor locus.
14

Germline transformation and isolation of midgut related genes from the potato tuber moth, Phthoramiaea operculella, (Lepidoptera: Gelechiidae).

Mohammed, Ahmed Mohammed Ahmed 15 November 2004 (has links)
Potato production in tropical and subtropical countries suffers from damage caused by the potato tuber moth (PTM), Phthorimiaea operculella. Development of a germline transformation system and the identification of genes that are differentially expressed within the PTM midgut are the main goals of this research. We tested three components that are critical to genetic transformation systems for insects; promoter activity, marker gene expression, and transposable element function. We compared the transcriptional activities of five different promoters, hsp70, hsp82, actin5C, polyubiquitin and ie1, within PTM embryos. The ie1 promoter flanked with the enhancer element, hr5, showed a very high level of transcriptional activity compared with the other promoters. The expression of the enhanced green fluorescent protein (EGFP) was detected under UV-illumination within the embryonic soma demonstrating that it can be used as an effective marker gene for PTM. The transpositional activities of the Hermes, mariner and piggyBac transposable elements were tested in interplasmid transposition assays. The piggyBac element was shown mobile within the embryonic soma with a transposition frequency of 4.2 X 10-5 transposition/donor plasmid. The piggyBac mobility has been enhanced by incorporating a transactivator plasmid expressing the IE1 protein from the bacoluvirus Autographa californica nuclear polyhedrosis virus. Seven transformation experiments were performed. The experiments failed to produce a transgenic PTM. The insect midgut is a rich region of molecular targets involved in food processing that could be potentially used to design a new control strategy. The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes from the PTM midgut. From this subtracted library, 2984 clones were collected and screened. Of these clones, 637 clones are candidate differentially expressed genes within the PTM midgut. Sixty-nine cDNA clones were randomly selected for DNA sequencing. Tweleve clones were selected for further analysis using RT-PCR and Northern blot techniques. Eleven of the clones resulted in positive results for midgut expression. Five clones, showing homology with insect immune peptides, were used in the challenge experiment which revealed that these cDNAs are constitutively expressed in the midgut, as well as being up-regulated due to bacterial or viral challenge.
15

Immunolocalization and in vivo Functional Analysis by RNAi of the Aedes Kinin Receptor in Female Mosquitoes of Aedes aegypti (L.) (Diptera, Culicidae)

Kersch, Cymon 2011 December 1900 (has links)
The evolution of the blood feeding adaptation has required precise coordination of multiple physiological processes in the insect, such as reproduction, behavior, digestion and diuresis. These processes are under careful synchronous hormonal control. For rapid excretion, multiple diuretic hormones are known. Although originally described based on their ability to stimulate hindgut contractions, the Aedes kinins have been shown to stimulate fluid secretion in female mosquitoes of Aedes aegypti. Aedes kinins are leucokinin-like neuropeptides released from neurosecretory cells in the brain and abdominal ganglia. They act by binding to the Aedes kinin receptor, a G proteincoupled receptor (GPCR). The Aedes kinin receptor has been cloned, sequenced, functionally characterized, and immunolocalized to stellate cells in the Malpighian tubules of Ae. aegypti. In addition to their myotropic and diuretic roles, leucokinin-like peptides and/or their receptors have been also been discovered in the nervous, digestive, and reproductive systems of other arthropod species. Therefore, the Aedes kinins have the potential to function in several simultaneous physiological processes that are stimulated by blood feeding. This thesis aims to understand better their role in the whole mosquito by investigating the Aedes kinin receptor's global expression as well as its in vivo contribution to post-prandial diuresis. Presence of the Aedes kinin receptor was investigated in the head, posterior midgut (stomach), hindgut, ovaries, and Malpighian tubules of both non blood-fed and blood-fed females by western blot using anti-receptor antibodies. The receptor was then immunolocalized in the posterior midgut and rectum. Finally, RNAi was employed to knock down kinin receptor expression, followed by measurement of in vivo urine excretion post blood feeding in a precision humidity chamber. Transcript and protein knockdown were confirmed by qPCR and immunohistochemistry, respectively. Results indicate widespread expression of the Aedes kinin receptor protein in organs novel for hematophagous insects and demonstrate the receptor's fundamental role in rapid diuresis. These findings strongly point to the Aedes kinins as integrative signaling molecules that could coordinate multiple physiological systems. The Aedes kinins could therefore have contributed to the success of the blood feeding adapation in mosquitoes.
16

Comparing the midgut regenerative responses in <i>Bacillus thuringiensis</i>-susceptible and resistant <i>Heliothis virescens</i> larvae

Castagnola, Anais Severiana 01 December 2011 (has links)
The crystal (Cry) toxins from Bacillus thuringiensis (Bt) display high specificity and toxicity against relevant insect pests and the use of Bt-based products continues to contribute to insect pest management. To protect this investment, further its potential, and investigate possible unintended effects, various research questions have been proposed. One issue related to Bt usage is the evolution of pest resistance to Bt toxins. The midgut epithelium is targeted by Cry toxins killing enterocytes, facilitating invasion of the hemocoel, leading to septicemia and mortality. While resistance may emerge from alterations to these steps, most research efforts have been focused on reduced toxin binding to midgut receptors as resistance mechanism. Lepidopteran crop pest Heliothis virescens strains have been hypothesized to have enhanced midgut proliferation and differentiation of stem cell populations allowing for regeneration and resistance to diverse Cry toxins. However, the molecular mechanisms involved are not known. We developed a flow cytometry method to monitor stem cell proliferation and differentiation to compare midgut regenerative responses to Cry intoxication in larvae from susceptible and Bt-resistant strains of H. virescens. The structure of the epithelial healing response was studied in vivo using hematoxylin-eosin stained midguts derived from larvae fed Cry1Ac toxin. We detected less regenerative cells in midguts from a Bt-susceptible strain (YDK) compared to midguts from resistant (KCB and CXC) strains, and an overall increase in the total number of cells per unit surface area in KCB midguts. Using primary midgut cell cultures, the midgut regeneration response to Cry1Ac in CXC was an increase in available differentiated cells compared to YDK. In contrast, KCB exhibited an increased abundance of stem cells compared to both YDK and CXC. Using a differential proteomics approach we characterized the proteins secreted by H. virescens midgut cells in response to Cry1Ac and identified a relevant role for arylphorin in promoting midgut regeneration in response to Cry1Ac and DiPel intoxication in both susceptible and resistant H. virescens larvae. The potential fitness costs associated with altered hexamerin transcript expression were monitored using larval bioassays.
17

Effects of probiotic Bacillus species on the composition and diversity of the midgut microbiota of black tiger shrimp, Penaeus monodon

Jessica Hill Unknown Date (has links)
Microbial communities associated with gastrointestinal tract of animals play a critical role in gut development, digestion and resistance to disease, thus the prospect of altering these communities beneficially by using probiotics is attractive. In terrestrial animals, the gut provides a stable, moist habitat in an otherwise moisture-limited environment, thus microbial communities tend to be very stable. In contrast, farmed aquatic animals reside within an environment that can support microbes in high densities, and as many marine animals drink continuously for osmoregulation, they are subjected to potential re-inoculation. Consequently, little is known of the stability of gut microbial communities in marine shrimp or whether it is possible to establish beneficial bacteria in the gut. The aims of this thesis were therefore to examine the midgut microbial community associated with farmed black tiger shrimp, Penaeus monodon, and to investigate whether the introduction of potentially probiotic Bacillus could alter the species diversity or abundance of the present microbes. Using culture methods it was found that B. pumilus was able to transfer between animals via the water column and persisted in the midgut for at least 7 days, while B. subtilis was only recovered from animals directly fed the bacteria and persisted for less than 24 h in the midgut. V. parahaemolyticus, a known shrimp pathogen,remained in the tanks it was originally found in, and did not transfer via the water column to other tanks and is therefore tightly associated with its host. A bacterium with apparent probiotic qualities was isolated from control animals in the above study and identified as a strain of B. pumilus. Its safety for food animal use was confirmed due to the absence of B. cereus toxin genes, and the isolate’s pH and salt tolerances were investigated. Moreover, the isolate was highly inhibitory to crustacean pathogens in the family Vibrionaceae. Methods to investigate the gut microbiota using the full cycle 16S rRNA methodology were optimized. Fluorescence in situ hybridization (FISH) probes designed specifically targeting B. pumilus, B. subtilis and B. licheniformis, commercially available probiotics, were validated for specificity and optimal hybridization conditions. For FISH analysis of bacteria in situ in histological sections of shrimp midgut trunks, fixation times in 4 % paraformaldehyde wereoptimizedfor bacterial RNA retention whilst maintaining tissue integrity. Due to the broad range of autofluorescence in the shrimp tissue, spectral imaging is required to adequately differentiate between host tissue and multiple bacterial probes. The richness and diversity of the midgut microbiota of animals treated with the novel strain of B. pumiluswere analyzed using 16S rRNA gene clone libraries and FISH analysis of histological sections. It was confirmed that B. pumilus can enter the midgut via top-coated feed and through water inoculation. In the tanks that were treated with B. pumilus the proportion of Vibrio sp. in the microbial community decreased, however, only in the systems in which B. pumilus was recovered from the shrimp midgut did the proportion of pathogenic Vibrio species decrease. The application of the B. pumilus caused a shift in the shrimp midgut microbiota, but the community returned to its initial diversity over time. The midgut microbiota of P. monodon is relatively stable but can be adjusted using probiotics. The transience or residence of the probiotics is strain-specific and should be tested for any new strains before determining optimum application protocols. The methods designed in this study are applicable to future research in this field.
18

Análise da expressão e silenciamento de genes do trato digestivo de Anopheles aquasalis

Carlos, Bianca Cechetto [UNESP] 30 September 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-09-30Bitstream added on 2014-06-13T18:29:21Z : No. of bitstreams: 1 carlos_bc_me_botib.pdf: 1447163 bytes, checksum: bbee87d6f015501c72b499b26af6cd4a (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudos recentes vêm elucidando a importância de uma diversidade de proteínas do intestino médio de insetos vetores, tanto nos processos de digestão como em respostas imunológicas e interações parasita-hospedeiro. Este trabalho teve como objetivo analisar a expressão de genes do intestino médio de Anopheles aquasalis, um importante vetor de malária no Brasil, a partir de clones sequenciados de bibliotecas de cDNA de machos e fêmeas alimentados apenas com sacarose. Nas fêmeas, pôde-se notar a grande predominância de serino proteases, proteínas ligantes de quitina e fatores relacionados à imunidade. Os machos também apresentaram diversos peptídeos de defesa imune, porém apenas uma protease digestiva e uma glicosidase. Alguns genes foram selecionados das bibliotecas para estudo de suas expressões durante a vida de An. aquasalis. Tripsina 1, peritrofina 1 e quinurenina 3-monooxigense tiveram seus níveis de expressão aumentados 6h após a ingestão de sangue, analisados através de qRT-PCR. No entanto, o silenciamento desses genes não resultou em alterações na longevidade de fêmeas adulta. O gene da serpina foi expresso em todas as fases do desenvolvimento do mosquito, exceto em ovos; e o gene da cecropina foi expresso em trato digestivo e carcaça de machos e fêmeas, principalmente após alimentação de açúcar ou sangue. Considerando que a ingestão de alimentos é a principal porta de entrada a microorganismos durante a vida adulta destes mosquitos, a presença de diversos produtos antimicrobianos, bem como a precoce expressão de peritrofina, outra proteína relacionada com a proteção do trato digestivo, mostrou que An. aquasalis está bem preparado imunologicamente contra esses microorganismos. Esta proteção está envolvida com o hábito alimentar desta espécie e pode também estar associada à sua baixa capacidade vetorial com relação aos plasmódios. / The importance of midgut proteins of Anopheles aquasalis has been elucidated both in digestion process as in immune responses and parasite-host interactions. This project targeted to analyze the midgut genes expression from An. aquasalis, an important malaria vector in Brazil, selecting clones from midgut cDNA library of female and male mosquitoes fed only on sugar. Serine proteases were predominant in females besides chitin binding proteins and immunity factors. Male mosquitoes also showed immune defense peptides, however only one digestive protease and one glucosidase. Some genes were selected from these libraries to expression study during mosquito development stages. Trypsin 1, peritrophin 1 and kynurenine 3-monoxygenase expression were up regulated at the midgut 6h after blood feeding, analyzed by real time PCR. Nevertheless, the gene silencing did not change the survivorship of adult females. Serpin gene was expressed in all mosquito development stages but eggs; cecropin gene was expressed in midgut and carcass from male and female, mainly after sugar or blood feeding. Considering the alimentation is the main entrance way of pathogens, the presence of antimicrobial peptides as the early peritrophin expression showed that An. aquasalis is immunologically adapted against these microorganisms. This protection is involved in feeding behavior of this specie and can be also related to its low Plasmodium vector capacity.
19

Metamorfose do intestino medio de abelhas : proliferação ou migração celular? / Metamorphosis in the midgut of bees : proliferation or cellular migration?

Cruz, Lilian Cota 26 February 2007 (has links)
Orientador: Mary Anne Heidi Dolder, Clovis Andrade Neves / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-10T19:24:09Z (GMT). No. of bitstreams: 1 Cruz_LilianCota_M.pdf: 6744301 bytes, checksum: 728821086751ef70a46cd6df9152a7a4 (MD5) Previous issue date: 2008 / Resumo: As abelhas são insetos holometábolos, pois apresentam metamorfose completa. Na metamorfose destes insetos, o trato gastrointestinal é completamente remodelado. Poucos estudos enfatizam os aspectos que envolvem a reconstituição do epitélio do intestino médio de abelhas durante a metamorfose. Os trabalhos que destacam a proliferação das células digestivas durante a metamorfose carecem de documentação das figuras de mitose. O presente trabalho contribui para o conhecimento da biologia dos Hymenoptera, gerando dados que possam esclarecer aspectos da fisiologia digestiva durante a metamorfose dos insetos sociais. Comprovamos a necessidade de aumento do número de células digestivas do intestino médio de Melipona quadrifasciata anthidioides ao final da metamorfose sem, contudo, observar figuras de mitose que comprovassem a proliferação destas células, como notado em Nasutitermes rotundatus (Holmgren) (Isoptera). É possível que as células regenerativas tenham origem externa ao intestino médio e migrem através da membrana basal para se estabelecerem no epitélio. Além disso, nesse trabalho descrevemos a morfologia do epitélio do intestino médio com auxílio da microscopia eletrônica de varredura, demonstrando que somente a membrana peritrófica diferiu entre as castas / Abstract: Bees are holometabolus insects, since they present complete metamorphosis. During the metamorphosis of the insects the gut is completely remodeled. Few studies emphasize aspects of the renewal of the epithelium of bee¿s midgut during metamorphosis. Studies that describe digestive cell proliferation are lacking in images of mitosis. This research is a contribution to the understanding of Hymenoptera biology in relation to some aspects of digestive physiology during metamorphosis of social insects. We have established the necessity of increasing the number of cells in the median intestine of Melipona quadrifasciata anthidioides at the end of metamorfosis without having, however, observed mitosis, as was found for Nasutitermes rotundatus (Holmgren) (Isoptera). Possibly the regenerative cells arisen outside the midgut migrated through the basal membrane, to establish themselves in the epithelium. Also, in this study we describe the morphology of the median intestine epithelium, using scanning electron microscopy, showing that only the peritrophic membrane presented differences in the casts studied. / Mestrado / Biologia Celular / Mestre em Biologia Celular e Estrutural
20

Serina proteinases digestivas de insetos-modelo / Digestive serine proteinases of model insects

Fabio Kendi Tamaki 29 March 2011 (has links)
Tripsinas e quimotripsinas, enzimas pertencentes à classe das serina proteinases, são as principais enzimas proteolíticas digestivas presentes no intestino médio de insetos de diversas ordens. Entretanto, enzimas de diferentes insetos possuem propriedades cinéticas distintas, sendo os motivos dessas diferenças especulados. Precipitações por sulfato de amônio das tripsinas de Tenebrio molitor, Diatraea saccharalis e Spodoptera frugiperda mostram que insetos Lepidópteros possuem serina proteinases mais hidrofóbicas, que foi confirmado através de cromatografias de interação hidrofóbica e da análise de acesso do solvente às superfícies protéicas em modelagens tridimensionais de seqüências. Tal fato está relacionado à formação de oligômeros e resistência a defesas de plantas. Inativações por TPCK mostram que quimotripsinas digestivas de S. frugiperda, inseto polífago, reagem duas ordens de grandeza mais lentamente e possui um deslocamento do pH ótimo de modificação em mais de uma unidade quando comparada com dos outros dois organismos, fato relacionado à resistência a cetonas presentes em diversas plantas. A tripsina digestiva de Periplaneta americana foi purificada e microsseqüenciada, resultando na seqüência VSPAFSYGTG e associada a um alérgeno (denominado PaTry), expresso nos cecos e na região anterior do ventrículo. O anticorpo anti-tripsina de M. domestica reconheceu apenas uma banda no intestino de P. americana e foi utilizado para imunocitolocalizar tripsinas nos tecidos epiteliais, demonstrando que esta é secretada por exocitose nos cecos e na região anterior do ventrículo, como esperado. Por último, a atividade majoritária de quimotripsina se localiza surpreendentemente na região posterior do ventrículo de M. domestica. Apesar disso, apenas 28% dessa atividade é perdida através das fezes, pois 31% da atividade enzimática se encontra firmemente aderida à membrana, e 41% na fração celular solúvel (associada ao glicocálice), sendo a atividade solúvel luminal correspondente a apenas 12%, indicando a existência de pelo menos duas espécies moleculares distintas, uma solúvel e uma aderida à membrana, comprovado inativações térmicas das duas atividades (solúvel e aderida à membrana) na presença e na ausência de Triton X-100, sendo que a atividade aderida à membrana apresentou uma maior meia vida com uma cinética de primeira ordem nos dois casos. Ensaio em gel demonstrou que o homogeneizado possui apenas uma banda de atividade quimotríptica de 30 kDa. A atividade solúvel majoritária foi purificada até a homogeneidade, apresentando uma banda de 30 kDa em SDS-PAGE, pH ótimo de 7,4 e é 90% inativada por TPCK 0,1 mM em pH 8,5 em 15 min. Ela prefere substratos contendo Phe em P1, apesar clivar substratos contendo Tyr e Leu. Uma seqüência contígua similar a quimotripsina foi obtida a partir de uma biblioteca de cDNA de intestino médio de M. domestica, formada por 71 ESTs (de 826 seqüências obtidas ao acaso), indicando que esta deve corresponder à atividade majoritária. Essa seqüência, denominada MdChy1, prediz uma proteína madura de 28.639,2 Da e foi clonada e expressa de maneira recombinante em E. coli BL21 (DE-3) Star, sendo utilizada para produção de anticorpos policlonais em coelhos, que reconheceram uma banda de 30 kDa no ventrículo anterior e posterior, mas não no médio. Esses anticorpos foram utilizados para imunomarcações e reconheceram proteínas no lúmem, nas microvilosidades e em pequenas vesículas do epitélio, demonstrando que a quimotripsina é secretada ao lúmem por exocitose e indicando que o MdChy1 corresponde à atividade majoritária de quimotripsina. Análises de expressão em M. domestica indicam a existência de dois conjuntos de serina proteinases digestivas, um expresso na região anterior e um segundo na região posterior do ventrículo. O MdChy1 é expresso na região posterior, local em que se encontra a atividade majoritária de quimotripsina. Uma reconstrução filogenética dos genes similares a quimotripsinas de Drosophila melanogaster e de M. domestica demonstram que a MdChy1 se agrupa com genes expressos no intestino médio, portanto, com função digestiva. / Trypsins and chymotrypsins, serine proteinases enzymes, are the major proteolytic activities present in the midgut of insects. However, enzymes obtained from different insects present different kinetic properties, and the reason for the differences are speculated. Trypsin precipitation of Tenebrio molitor, Diatraea saccharalis and Spodoptera frugiperda with ammonium sulfate showed that Lepidopteran insects possess serine proteinases with a higher superficial hydrophobicity than insects belonging to other orders, which may be associated to oligomerization of enzymes and resistance to inhibitors present in the food. This was confirmed by hydrophobic interaction chromatography and analysis of solvent access to serine proteinases surface. Moreover, inactivations of chymotrypsins by TPCK showed that S. frugiperda chymotrypsins react one order slower and has an optimum pH of modification more than 1 unit higher than chymotrypsins of D. saccharalis and T. molitor, which was related with the resistance of the enzyme to the presence of plant ketones, since S. frugiperda is a polyphagous organism. The digestive trypsin from Periplaneta americana midgut was purified microssequenced, resulting in the sequence VSPAFSYGTG, coincident to the MPA3 allergen (named PaTry), which is expressed in the caeca and anterior ventriculus. Western blot using M. domestica trypsin antisera recognized a single band, and immunohistochemical assays using this antisera showed that the P. americana trypsin is secreted by exocitosys in caeca and anterior ventriculus, which is coincident to the expression data. Although the major M. domestica chymotrypsin activity is present in the posterior ventriculus, only 28% of the activity is lost in feces, because 31% of activity is membrane-bound, and 41% is in the cellular soluble fraction (glycocalix-associated), and only 12% of total activity is soluble in the lumen, indicating the existence of at least two molecular species of chymotrypsins. Thermal inactivations of both activities (soluble and membrane-bound) showed that they may represent two different molecular enzymes, since the membrane-bound activity has a higher half-life than the soluble both in the presence and in the absence of Triton X-100. Both activities presented a linear first-order inactivation kinetic. In gel assays showed the presence of only one activity band in the midgut of 30 kDa. The major soluble activity was purified through one affinitychromatography, and active fractions presented a single 30 kDa band, a optimum pH of 7.4 and was 90% modified by TPCK 0.1 mM at pH 8.5 during 15 min. This enzyme preferentially cleaves substrates containing Phe residues in P1, although it cleaves substrates containing Tyr and Leu. A contig of a chymotrypsin-like sequence was randomly obtained from a cDNA library of M. domestica midguts from 71 ESTs (a total of 826 sequences), indicating that this sequence corresponds to the major activity present in the lumen. This sequence, named MdChy1, predicted a protein with 28639.2 Da which was cloned, recombinantly expressed in E. coli BL21 (DE-3) Star, this recombinant MdChy1 was used to raise polyclonal antibodies in rabbit. A western blot using this antisera recognised a single band in the anterior and posterior ventriculus, but not in the middle. Imunno-gold labeling of epithelium marked proteins in the lumen, at the microvilli and inside small vesicles, demonstrating that chymotrypsin is secreted through exocytosis in M. domestica and reinforcing that MdChy1 corresponds to the major chymotryptic activity found in the midgut. A semi-quantitative RT-PCR of M. domestica serine proteinase-like genes demonstrated that there are two set of genes, one expressed in the anterior and another in the posterior ventriculus, as visualized in western blot. MdChy1 is expressed in the posterior ventriculus, where the major chymotryptic activity is found. A phylogenetic reconstruction of Drosophila melanogaster chymotrypsin-like sequences and M. domestica chymotrypsins showed that MdChy1 branched with sequences expressed in midgut, thus coding proteins involved in digestion.

Page generated in 0.0241 seconds