• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 2
  • Tagged with
  • 38
  • 38
  • 38
  • 15
  • 14
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

High performance radio-frequency and millimeter-wave front-end integrated circuits design in silicon-based technologies

Kim, Jihwan 21 April 2011 (has links)
Design techniques and procedures to improve performances of radio-frequency and millimeter-wave front-end integrated circuits were developed. Power amplifiers for high data-rate wireless communication applications were designed using CMOS technology employing a novel device resizing and concurrent power-combining technique to implement a multi-mode operation. Comprehensive analysis on the efficiency degradation effect of multi-input-single-output combining transformers with idle input terminals was performed. The proposed discrete resizing and power-combining technique effectively enhanced the efficiency of a linear CMOS power amplifier at back-off power levels. In addition, a novel power-combining transformer that is suitable to generate multi-watt-level output power was proposed and implemented. Employing the proposed power-combining transformer, a high-power linear CMOS power amplifier was designed. Furthermore, receiver building blocks such as a low-noise amplifier, a down-conversion mixer, and a passive balun were implemented using SiGe technology for W-band applications.
32

Large signal model development and high efficiency power amplifier design in cmos technology for millimeter-wave applications

Mallavarpu, Navin 07 May 2012 (has links)
This dissertation presents a novel large signal modeling approach which can be used to accurately model CMOS transistors used in millimeter-wave CMOS power amplifiers. The large signal model presented in this work is classified as an empirical compact device model which incorporates temperature-dependency and device periphery scaling. These added features allow for efficient design of multi-stage CMOS power amplifiers by virtue of the process-scalability. Prior to the presentation of the details of the model development, background is given regarding the 90nm CMOS process, device test structures, de-embedding methods and device measurements, all of which are necessary preliminary steps for any device modeling methodology. Following discussion of model development, the design of multi-stage 60GHz Class AB CMOS power amplifiers using the developed model is shown, providing further model validation. The body of research concludes with an investigation into designing a CMOS power amplifier operating at frequencies close to the millimeter-wave range with a potentially higher-efficiency class of power amplifier operation. Specifically, a 24GHz 130nm CMOS Inverse Class F power amplifier is simulated using a modified version of the device model, fabricated and compared with simulations. This further demonstrates the robustness of this device modeling method.
33

SiGe HBTs Operating at Deep Cryogenic temperatures

Yuan, Jiahui 09 April 2007 (has links)
As Si-manufacturing compatible SiGe HBTs are making rapid in-roads into RF through mm-wave circuit applications, with performance levels steadily marching upward, the use of these devices under extreme environment conditions are being studied extensively. In this work, test structures of SiGe HBTs were designed and put into extremely low temperatures, and a new negative differential resistance effect and a novel collector current kink effect are investigated in the cryogenically-operated SiGe HBTs. Theory based on an enhanced positive feedback mechanism associated with heterojunction barrier effect at deep cryogenic temperatures is proposed. The accumulated charge induced by the barrier effect acts at low temperatures to enhance the total collector current, indirectly producing both phenomena. This theory is confirmed using calibrated 2-D DESSIS simulations over temperature. These unique cryogenic effects also have significant impact on the ac performance of SiGe HBTs operating at high-injection. Technology evolution plays an important role in determining the magnitude of the observed phenomena, and the scaling implications are addressed. Circuit implication is discussed.
34

Frontiers of optical networking technologies: millimeter-wave radio-over-fiber and 100g transport system for next-generation high-data-rate applications

Hsueh, Yu-Ting 04 April 2012 (has links)
The enabling technologies and the issues of next-generation millimeter-wave wireless access network and 100G long-haul optical transport network were developed and identified. To develop a simple and cost-effective millimeter-wave optical-wireless system, all-round research on the technical challenges of optical millimeter-wave generation, transmission impairments compensation, and simple base station design were discussed. Several radio-over-fiber systems were designed to simultaneously deliver multi-band wireless services on a single optical infrastructure, enabling converged system control and quality maintenance in central office. For the 100G optical transport network, the issues related to successful implementations of transmitter, fiber link, and receiver of a 112-Gb/s polarization-division multiplexing-quadrature phase shift keying (PDM-QPSK) system were comprehensively explored. The experimental results based on the constructed 112-Gb/s testbed indicated that careful dispersion management can effectively increase nonlinearity tolerance. Furthermore, the special emphasis on the two impairments of the 100G network with reconfigurable optical add-drop multiplexers: passband narrowing and in-band crosstalk, was studied. The results demonstrated that these impairments can be readily predicted with proper experimental and simulation efforts.
35

Optoelectronic modulation of mm-wave beams using a photo-injected semiconductor substrate

Gallacher, Tom F. January 2012 (has links)
This thesis discusses optoelectronic devices at mm-wave frequencies, focusing on optoelectronic beamforming and non-mechanical beam steering based on an optically excited Fresnel zone plate plasma. The optically controlled zone plate, termed the photo-injected Fresnel zone plate antenna (piFZPA) within this work, is introduced and a comprehensive theoretical framework developed. The design and optimisation of Fresnel zone plates are detailed, which determine the inherent performance of the piFZPA. A range of zone plates were designed, fabricated, and characterised at 94 GHz with up to 46 dBi gain, -26 dB sidelobe levels, and 67% aperture efficiency being measured for a quarter-wave design. The control of (sub) mm-wave beams by optical modulation of the complex permittivity of a semiconductor substrate is discussed. The significance of the free-carrier plasma dynamics, the effective lifetime, surface recombination, and the limits of the substrate which are imposed by the spatial resolution of the free-carrier plasma are highlighted, with the optimisation of these parameters discussed. The passivation quality of high-resistivity silicon wafers were characterised using a mm-wave photoconductance decay method, which yielded lifetime improvements from τ[subscript(eff)] = 60 us up to τ[subscript(eff)] ≈ 4,000 us, resulting in lowered recombination velocities (S = 15 cm/s). W-band characterisations of the passivated wafers illustrate the significance of surface recombination, with measured attenuations of up to 24 dB. Novel theoretical models are developed throughout this thesis, which yield insight into the requirements of optoelectronic devices, and are shown to agree well with measured data. The theoretical framework developed details the requirements, limitations, suitability, and design of piFZPAs at any frequency. A range of transmission-type piFZPAs are demonstrated and characterised at 94 GHz, both on-axis and off-axis, based on a novel architecture, with up to 8% aperture efficiency. Finally, the hybridisation of the piFZPA technique and well established visible display technologies, which has been developed throughout this thesis, enable low-cost, simple, and highly flexible optoelectronic devices, highlighting this method as an attractive solution to adaptive beamforming and non-mechanical steering at mm-wave and submm-wave frequencies.
36

Characterization and Design of Liquid Crystal Polymer (LCP) Based Multilayer RF Components and Packages

Thompson, Dane C. 11 April 2006 (has links)
This thesis discusses the investigation and utilization of a new promising thin-film material, liquid crystal polymer (LCP), for microwave and millimeter-wave (mm-wave [>30 GHz]) components and packages. The contribution of this research is in the determination of LCP's electrical and mechanical properties as they pertain to use in radio frequency (RF) systems up to mm-wave frequencies, and in evaluating LCP as a low-cost substrate and packaging material alternative to the hermetic materials traditionally desired for microwave circuits at frequencies above a few gigahertz (GHz). A study of LCP's mm-wave material properties was performed. Resonant circuit structures were designed to find the dielectric constant and loss tangent from 2-110 GHz under both ambient and elevated temperature conditions. Several unique processes were developed for the realization of novel multilayer LCP-based RF circuits. These processes include thermocompression bonding with tight temperature control (within a few degrees Celsius), precise multilayer alignment and patterning, and LCP laser processing with three different types of lasers. A proof-of-concept design that resulted from this research was a dual-frequency dual-polarization antenna array operating at 14 and 35 GHz. Device characterization such as mechanical flexibility testing of antennas and seal testing of packages were also performed. A low-loss interconnect was developed for laser-machined system-level thin-film LCP packages. These packages were designed for and measured with both RF micro-electromechanical (MEM) switches and monolithic microwave integrated circuits (MMICs). These research findings have shown LCP to be a material with uniquely attractive properties/capabilities for vertically integrated, compact multilayer LCP circuits and modules.
37

Optical millimeter-wave signal generation, transmission and processing for symmetric super-broadband optical-wireless access networks

Jia, Zhensheng 01 July 2008 (has links)
Three 40/60-GHz optical-wireless bidirectional architectures are designed with a centralized light source in the central office based on wavelength reuse. Three super-broadband access networks are proposed and experimentally demonstrated for simultaneously delivering wired and wireless services over an optical fiber and an air link in a single transport platform. The transport feasibility in metro and wide-area access networks with multiple reconfigurable optical add-drop multiplexers (ROADMs) nodes is explored for 40-GHz and 60-GHz optical millimeter-wave signals. Additionally, the optical-wireless systems using the orthogonal frequency division multiplexing (OFDM) modulation format are analytically and experimentally demonstrated to mitigate the chromatic dispersion in optical fiber. This thesis also successfully implements the testbed trial for the delivery of uncompressed 270-Mb/s standard-definition television (SDTV) and 1.485-Gb/s high-definition television (HDTV) video signals over optical fiber and air links. The demonstration represents the first ever reported real applications over hybrid wired and wireless access networks, showing that our developed up-conversion schemes and designed architectures are highly suitable for super-broadband applications in next-generation optical-wireless access networks.
38

Low-cost SiGe circuits for frequency synthesis in millimeter-wave devices

Lauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)

Page generated in 0.3453 seconds