• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 7
  • 2
  • Tagged with
  • 140
  • 140
  • 140
  • 140
  • 62
  • 36
  • 26
  • 24
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Law enforcement in the South African Gold Mining sector : the nexus between company, environmental and equity law

Lombard, Dewan 08 1900 (has links)
Although the mining industry contributed to the development of the country by providing infrastructure and employment, it left a negative impact on the environment. To this end, various pieces of law were promulgated to limit environmental damage and hold those who pollute (Mining Companies / licensees) accountable. This research focused on two study sites namely Blyvooruitzicht and Grootvlei gold mines. Both mines underwent forced mine closure and their environmental liabilities remained unresolved. This study focused on important laws governing the South African gold mining sector, to form an understanding of these laws and to establish if these laws protect the environment sufficiently or not. The study included an overview of the current relevant legislative framework regarding mines, with the aim of identifying if there were gaps between Mining law, Company law, B-BBEE law (Equity Law) and Environmental law. This included an exploration of the interrelationships between the various pieces of legislation and the challenges relating to compliance and enforcement of these mentioned laws. Further to this, the research study investigated the requirements and responsibilities of the South African State, and directors of mining companies. The finding was that South African law with respect to mining companies needs minor adjustments, but the crux of the problem is a lack of effective implementation and enforcement by the State. There is ineffective administration of environmental quality control by the various designated National Government Departments. Recommendations made include the need for clear monitoring of compliance and enforcement of the environmental regulatory framework if there is to be successful mine closure in South Africa. In addition, the South African State Government could consider incentivizing compliance, that is, reward mining companies who uphold environmental law. Further to this the thesis suggest the elimination of any contradictions between the various legislations within the mining industry and stipulates that legislation must be read in conjunction with one-another if a robust legislative framework is to exist. / Environmental Sciences / M.Sc. (Environmental Science)
132

Interaction of gold mine taillings leachates with soil and geochemical partitioning of toxic metal species

Ngoetjane, Pitsi Christopher 02 February 2016 (has links)
Department of Ecology and Resource Management / MENVSC
133

Knowledge, attitude and practice of coal mineworkers pertaining to Occupational Health and Safety at the Leeuwpan Mine in Mpumalanga Province, South Africa

Mavhunga, Khuthalo 21 September 2018 (has links)
MPH / Department of Public of Health / The occupational health and safety of coal mine workers is one of the major occupational challenges in the mining industry. Coal mine workers face the looming perils of potential falls of volatile rocks, the ergonomic challenges caused by bending and lifting heavy objects in their daily work, the challenges caused by inhaling coal mine dust which can cause coal workers' pneumoconiosis (CWP) and a plethora of other hazards in both underground and open cast mines on a daily basis. The aim of the study is to assess the knowledge, attitude and practice of coal mineworkers pertaining to occupational health and safety at the Leeuwpan mine in Mpumalanga province of South Africa. The study adopted a quantitative, cross sectional descriptive design. Self-reported questionnaires with closed-ended questions were administered to the eligible participants. The study targeted the 3200 coal mineworkers who were employed at the Leeuwpan mine in Lephalale. A sample of 356 mineworkers was used as derived from Slovin’s formula and data was collected over a period of 5 days at the Leeuwpan mine. Measures to ensure validity and reliability were ensured and ethical considerations were observed. The Statistical Package for Social Sciences (SPSS) version 23.0 was used to analyse the data. Results and recommendations are based on the findings of the study. / NRF
134

Geochemical and mineralogical characterization of gold mine tailings for the potential of acid mine drainage in the Sabie - Pilgrims's Rest Goldfields

Lusunzi, Rudzani 21 September 2018 (has links)
MESMEG / Department of Mining and Environmental Geology / This study entails geochemical and mineralogical characterization of gold tailings of Nestor Mine and Glynn’s Lydenberg Mine of the Sabie-Pilgrim’s Rest goldfields. A total of 35 samples were collected and were analysed for chemical composition (XRF and ICP-MS), mineralogical composition (XRD). In addition, acid-base accounting (ABA) techniques had been conducted to predict the potential for acid mine drainage. Seepage from Nestor tailings dump and water samples from the adjacent Sabie River were also collected and analysed by means of inductively coupled plasma mass spectrometry (ICP-MS) and immediate constituent (IC) -analytical techniques. The study revealed that Sabie-pilgrim’s rest goldfield is characterized by both acid generating and non-acid producing tailings, and this is attributed to variations in the mineralogy of source rocks. Gold occurred within the Black Reef Quartzite Formation in the Nestor Mine and within the Malmani Dolomite in the case of Glynn’s Lydenburg Mine. Mineralogy and bulk geochemical analyses performed in this study showed a clear variation in the chemistry of Nestor Mine and Glynn’s Lydenburg Mine tailings. Predominant oxides in Nestor mine tailings samples are SiO2 (ranging from 66.7-91.25 wt. %; followed by Fe2O3 and Al2O3 (in range of 0.82-15.63 wt. %; 3.21-12.50 wt. % respectively); TiO2 (0.18-10.18 wt. %) and CaO (0.005-3.2 wt. %). Also occurring in small amounts is CaO (0.005-3.2 wt. %), K2O (0.51-2.27 wt. %), MgO (0.005-1.46 wt. %), P2O5 (0.029-0.248), Cr2O3 (0.013-0.042 wt. %) and Na2O (0.005-0.05 wt. %). The samples also contain significant concentrations of As (137-1599 ppm), Cu (34-571 ppm), Cr (43-273 ppm), Pb (12-276 ppm), Ni (16-157 ppm), V (29-255 ppm), and Zn 7-485 ppm). In the Glynn’s Lydenburg Mine tailings SiO2 is also the most dominant oxide ranging between 47.95 and 65.89 w%; followed by Al2O3 (4.31 to 16.19 wt. %), Fe2O3 (8.48 to 11.70 wt %), CaO (2.18 to 7.10 wt. %), MgO (2.74 to 4.7 wt. %). Occurring in small amounts is K2O (1.12-1.70 wt. %), MnO (0.089-0.175 wt. %), P2O5 (0.058-0.144 wt. %) and Cr2O3 (0.015-0.027 wt. %). Arsenic (As), is also occurring in significant amounts (807-2502 ppm), followed by Cr (117-238 ppm), Cu (10-104 ppm), V (56-235 ppm), Ni (45-132 ppm), Pb (13-63 ppm) and Zn (90-240 ppm). Nestor Mine tailings associated with Black Reef Formation mineralization have net neutralizing potential (NPR) <2, hence more likely to generate acid; and their acid potential (AP) ranges 1.56 to 140.31 CaCO3/ton and neutralizing potential (NP) range from -57.75 to -0.3 CaCO3/ton. Glynn’s Lydenburg Mine tailings dump which is vi associated with dolomite mineralization, however, was not leaching acid. Based on acid-base accounting results, these tailings have more neutralizing potential (ranging between 57.6 and 207.88 CaCO3/ton) than acid potential (ranging between 7.5 and 72.1 CaCO3/ton); and their NPR>2, hence unlikely to produce acid. This is confirmed by paste pH which was in the ranges between 7.35 and 8.17. Tailings eroded from Nestor Mine tailings dump were also found to be characterized by high content of metals and oxides, namely, As, Cu, Ni, Pb, V, and Zn with SiO2, Fe2O3 and TiO2. The tailings were observed eroded into the Sabie River where AMD related precipitate (yellow boy) was also observed, indicating further oxidation downstream. Field observations, onsite analyses of water samples and laboratory results revealed that Nestor Mine tailings storage facility discharges acid mine drainage with considerable amounts of Al, As, Cu, Fe, Mn, Zn and SO4 and very low pH exceeding the limit as per South African water quality standards. High concentrations of these metals have toxicity potential on plants, animals and humans. Upon exposure to oxygen and water, tailings from Nestor Mine are more likely to generate acid mine drainage that can cause detrimental effect to the environment and the surrounding communities. Potential pollutants are Fe, Mn, Al, As, Cr, Cu, Ni and Pb. Tailings from Glynn’s Lydenberg showed no potential for acid mine drainage formation. / NRF
135

Green synthesis of geopolymeric materials using Musina Copper Mine Tailings: a case of beneficial management of mine tailings

Matidza, Murendeni 17 September 2019 (has links)
MENVSC / Department of Ecology and Resource Management / Mine tailings (MT) have been a global problem due to the environmental impacts the waste generates such as air, soil and water pollution. The detrimental impacts include a global problem such as acid mine drainage (AMD) which has been difficult to cleanup. Several studies have been conducted to find alternative measures in reducing or mitigating impacts such as AMD and air pollution. Several studies have revealed how alumino-silicate mineral waste can be used as raw material to produce construction materials. This study aimed at evaluating the potential of synthesizing a geopolymer material from Musina copper mine tailings. Tailings were characterized for their physicochemical and mineralogical compositions using standard laboratory techniques in order to evaluate suitability in geopolymerization. First section of the results presented physicochemical and mineralogical characterization of the Musina copper tailings together with the bioavailability of the chemical species. It was observed that the tailings are mainly composed of SiO2 and Al2O3 as the major oxides indicating that they are aluminosilicate material. Mineralogical analysis revealed dominance of quartz, epidote and chlorite as the major minerals. The bioavailability assessment showed that largely Cu and Ca are bioavailable and highly soluble in an aqueous solution while Al, Mg, Ni, Co, Cr and Fe have a high proportion in non-labile phase. Second section presented the preliminary results wherein the potential application of Musina copper tailings in geopolymerization was evaluated. The results showed that Musina copper tailings can be used to synthesize a geopolymer material. However, it was recommended that several parameters influencing geopolymerization need to be evaluated. The third section presented the evaluation of optimum parameters that influence the geopolymerization process, which include type of alkali activators, alkali activator concentration, curing temperature, liquid-solid (L/S) ratio and curing regime. It was observed that a mixture of NaOH:Na2SiO3.5H20 at a ratio of 70:30 yields a better geopolymer material. The concentration of 10 M NaOH:Na2SiO3.5H20 at a ratio of 70:30 was observed to be the best that yielded the UCS that is acceptable according to SANS1215 standards. When evaluating curing regime, it was found that the material cured using greenhouse has lower UCS as compared to the material cured using oven. The v effect of temperature showed that the UCS decreases with increasing curing temperature. An admixture of river sand and cement was introduced which resulted in a high UCS of 21.16 MPa when using an admixture of cement. The mineralogical composition of the geopolymer bricks showed formation of secondary minerals such as phlogopite, fluorapatite, diopside and actinolite. Batch leaching conducted on the geopolymer bricks detected high leaching of Na from the bricks. Based on the findings of the study of the raw MT potential to produce geopolymer bricks, it was concluded that the material can be used to produce bricks that are within the SANS 1215 requirements. The study further recommended that the study a focus on using cylindrical moulds, other alkali activators and a mechanical mixer. It was also recommended that the greenhouse be restructured to contain heat within the greenhouse during the evening so as to allow constant temperature within / NRF
136

An evaluation of the ecological impacts of sand mining on the Mokolo River in Lephalale, South Africa

Maeko, Mokgadi Precious 11 1900 (has links)
This study aimed to evaluate the ecological impacts of sand mining on the Mokolo River, in Lephalale. The study focused on the water quality, macroinvertebrates and physical disturbances as indicators in order to determine the ecological im-pacts of sand mining on the Mokolo River. The water quality variables, which this study entailed, were related to sand mining and other sources of pollution such as coal mining, power station industries, agriculture and wastewater treatment works on the Mokolo River. The water quality results for pH, electrical conductivity (EC), total alkalinity (CaCO3), sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), chloride (Cl), fluoride (F), sulphate (SO4) and nitrate (NO3-N) were not over the limits, however turbidity, total coliforms and E. coli were over the limits as per the Target Water Quality Guideline (TWQG). The River Health Programme (RHP) was done at upstream, sand mining and downstream areas in the Mokolo River using the South African Scoring System Version 5 (SASS5). The ecological status at the upstream and downstream areas changed from class C (March 2018) to class B (November 2018), indicating that the ecological status improved in those areas of the Mokolo River. However, at the sand mining area the ecological status has not improved and it was seriously modified due to the physical disturbance as a result of sand mining. Ecological impacts, such as the removal of marginal and riparian vegetation, erosion, disturbed riverbed, undercutting and collapse of riverbanks, loss of adjacent land, river deepened, river widened, water pools, in stream sand stockpiles and river diversions, were determined at the sand mining area. No physical disturbances at the upstream and downstream areas were determined. The findings of this study indicate that the ecological impacts of change in water quality at the upstream and downstream areas was due to high turbidity, Total coli-forms and E. coli. The absence of sensitive macroinvertebrates and loss of ma-croinvertebrates and the physical disturbances within the Mokolo River was be-cause of sand mining. The study indicates that sand mining has negative impacts on the water quality, water quantity, macroinvertebrates and physical characteris-tics of the Mokolo River. / Environmental Sciences / M. Sc. (Environmental Science)
137

The rebellious and ungovernable Barberton community against Barberton Mines (Pty) Ltd

Ngomane, Fortunate Nomxolisi 01 1900 (has links)
Text in English / This is a study of community protest against Barberton Mines (Pty) Ltd. It is a study of conflict and conflict resolutions. Barberton Mines (Pty) Ltd is one of the three gold mining companies in Barberton, and is in dire need of a bankable community/stakeholder relation management strategy, which should at least reduce, if not eliminate, the endless violent community protests against its operations. Methodologically, the study is predicated on a qualitative approach backed by oral interviews and the use of a survey. The study reveals that as much as the community appreciates Barberton Mines for its delivery in socio-economic development initiatives, Barberton Mines’ recruitment and procurement departments are not doing any justice in terms of preferred policy in favour of the locals/Barberton community. This is a key source of conflict. The results also reveal that the Barberton Mines Transformation Trust (BMTT), a vehicle established for socioeconomic development in Barberton, is considered to be ineffective by the community and is one of the causes of the conflict. The resolutions of the conflict include the effective implementation of the mining legislation and unrolling of the Mining Charter. The effectiveness and lack thereof of these conflict resolutions are subjected to analysis in this study. / Development Studies / M.A. (Development Studies)
138

A security risk management approach to the prevention of theft of platinum group metals: case study of Impala Platinum Mines and Refinery

Mokhuane, Seadimo Joseph 02 1900 (has links)
Text in English / The purpose of this study was to establish the vulnerabilities of the security control measures that are being used at Impala Platinum mines and refinery to prevent the theft of Platinum Group Metals (PGMs). It is important to ensure that the security control measures in place are effective and efficient in preventing the occurrence of such theft. The research examined the security risk management approach to the prevention of theft of PGMs and the causes of theft of PGMs by organised crime syndicates operating in South Africa and abroad. The study found that Impala Platinum employees, in collusion with contractors and members of mine security services, are involved in the theft of PGMs. To achieve the goals and objective of the research study, effective security control measures were identified that will help Impala Platinum mines and refinery to overcome the risks and challenges related to the theft of PGMs. / Security Risk Management / M. Tech. (Security Management)
139

A critical evaluation of local level responses to mine closure in the Northwestern KwaZulu-Natal coal belt region, South Africa

Buthelezi, Mbekezeli Simphiwe January 2004 (has links)
The de-industrialisation process that was a common feature of North America and Western Europe in the 1970s, through into the 1980s has become an observable feature in African countries and South Africa in particular in the last two decades. Globally, hard hit areas include those associated with the early Industrial Revolution characterised by mass production and the agglomeration of iron and steel, coal and textile industries. General changes in the global market, especially the falling demand for extractive heavy minerals like coal and gold have also affected many countries region and localities. In the case of South Mrica, the previous high economic dependence on mined minerals like coal and gold has resulted in many once prosperous mining regions of the country being reduced to a shadow of their former selves. The worst affected areas in South Africa are those of the Klerksdorp Goldfields in the North West Province and Free State Goldfields, with the latter alone losing 100,000 jobs during the 1990s. This trend has also been acute in the coal-mining industry of the KwaZulu-Natal province since the late 1970s. The firms that had grown in the shadow of the major mining company supplyipg machinery, or who processed the semi-manufactured product are also severely affected by the closing down and restructuring in the mining and iron industries. These industries have often been forced to close down because of a break in the vital connections they developed with these mining industries. Such localised economic crisis has encouraged the universal trend towards the devolution of developmental responsibilities to the local governments and other local stakeholders to - empower them to respond to these changes. This study investigated the local economic initiatives which have been undertaken in the three municipalities of north-western KwaZulu Natal i.e. Utrecht, Dundee and Dannhauser to respond to the closures which have taken place in the mining industry of this region, which used to be among the most prosperous coal mining regions of South Africa. Using their new developmental mandate the local governments, in partnership with the communities and other external interveners have tried to respond to these localised economic crisis and also indirectly to the general poverty and underdevelopment, which characterises this region of KwaZulu-Natal. The effects of apartheid policies, and previous discriminatory rural development policies in, particular, and the Regional Industrial Development policy, which was intensively applied in the 1980s by the pre-1994 government regime, have further compounded the magnitude of the challenge. The lack of capacity in some municipalities has constrained successful implementation of Local Economic Development has led to some communities acting alone to face their situation with or without external intervention.
140

The application of the modified crude settleable dust approach as a viable asbestos mineral test method

Kwata, Maphuti Georgina 11 1900 (has links)
Text in English with abstracts and keywords in English, Afrikaans, Sepedi and Sesotho / Soil and other geological materials found on the crust of the Earth are known to be rich in naturally occurring silicate minerals. Asbestos is one of the fibrous silicate minerals that was mined predominantly in some regions of Limpopo, Mpumalanga and Northern Cape provinces in South Africa. Despite the cessation of asbestos mining due to associated human health effects in 2002, there is still a concern about possible environmental exposure to asbestos fibres. A single asbestos fibre is made of millions of microscopic needle-like fibrils which break easily to produce inhalable size fractions that are reported to cause lung diseases. The main source of asbestos fibres in former mining areas is asbestos mine dumps and asbestos contaminated surface soil. Asbestos mine dumps in Limpopo Province are partially rehabilitated, while in Mpumalanga Province they are not rehabilitated and all these dumps are now under the care of government because the original owners have abandoned them. The settleable dust is the first indicator of airborne dust pollution and the rate of settleable dust rates was used to select the sites to be monitored. A pilot study was conducted to test the performance of the ASTMD1739:1998 and ASTM D 1739:1970 methods. The method was further modified and optimized to measure asbestos load in settleable dust samples. A total ten sites located around vulnerable human settlements that are in close proximity to the abandoned asbestos mine dumps were chosen in Mpumalanga and Limpopo Provinces respectively. Airborne, surface and trapped dust samples were collected once a month around human settlements that are in close proximity to the abandoned asbestos mine dumps from April 2016 to June 2017. Airborne dust samples were collected using the official settleable dust monitoring method, the general particulate matter E-sampler and the official asbestos Air-Con 2 sampler. Surface dust was collected outdoors around the settleable dust collection units using a brush and dust pan and was stored in labeled zipper bags made of plastic material. Trapped dust samples were collected using sticky tape both indoors and outdoors around the window panes, on surfaces of furniture and on windscreens of old cars and were stored in labeled closed containers. Surface soil samples were also screened with the hand held asbestos analyser before collection. The samples were extensively and carefully prepared and handled to avoid or minimize cross contamination using standard laboratory methods and were analysed using calibrated analytical instruments. An adapted method (ASTMD 1739:1970) was used to determine the presence of asbestos hazard in a form of mineral count. This method was also used for the identification of asbestos and other minerals in different dust samples using the XRD technique. Physical features of all minerals such as the shape, size and type were also determined as part of the characterization process using the SEM-EDS technique. The ASTMD1739:1998 method gave rise to higher retention of settleable dust, hence it was found to be more efficient. Unfortunately, this best performing method is not legislated or regulated by the government. This researcher concludes that the reasons could be due to the different shapes of the windshield designs (which means the different designs of windshields) at may make it difficult to standardize and control. However, this information gap provides an opportunity of a longer focused study of this method with the intention of finding a standardized windshield design that could be recommended for use in the country. Secondly, the units that had both water and algaecide gave rise to higher settleable Mpumalanga. Three exceedances of 600 mg/m2/day of residential limit regulated through National Dust Control Regulation no.28 of 2013 presented in decreasing order in Limpopo were 2724 mg/m2/day at Site E, 1638 mg/m2/day at Site D and 834 mg/m2/day at Site B in the same month of March 2017 . The XRF data of metal oxides, including these top three [Si(IV)O2, Fe2(III)O3 and Al2(III)O3], confirm the dominance of silicate minerals in surface dust samples from both provinces. The XRD mineralogy data from filtered settleable dust show the dominance of the amphibole asbestos particulates ranging from 18 to 56 % in Limpopo province and 2.0 to 3.0 % in Mpumalanga province. Low presence of serpentine minerals with the highest being 2.0 % and 7.0 % in Limpopo and Mpumalanga provinces respectively. About 8.0 to 43 % of amphibole asbestos minerals were measured on trapped dust in Limpopo together with zero detection of serpentine. No asbestos minerals were detected on trapped dust from Mpumalanga, despite the close proximity of the unrehabilitated asbestos mine dumps All airborne asbestos fibres that were captured on the filter substrates were a bove the limit value of 100 f/mL of air. The highest airborne asbestos fibre and concentration counts m easured were 40 fibres and 0, 00434 f /mL concentration in October 2017 at Site A. The second highest fibre count concentration was measured in June with 0,00287 f/mL at Site A in September 2017 and 0,01085 f/mL at the Site D in June 2017 monitoring sites. Again, the highest in June 2017 with 0,00125 f/mL for Site A for Limpopo Province. In Mpumalang a the lowest asbestos fibre concentration which are be low the OHSA no. 39 of 1993 and MDHS 39/ 4, 1995 0.1 f/mL and 100 f/mL However, from the safety perspective all asbestos fibres or minerals inhaled are a hazard to human health. The study established that the adapted asbestos mineral count method succeeded in identifying and quantifying the asbestos minerals that existed in the settleable dust samples from the study areas. These outcome s were successfully validated with the test undertaken using both the officially (Air Con 2 sampler) and unofficial (E sampler) recognized method of asbestos fibre count. The adapted mineral count method provides the research community with an alternative, cost effective and user friendly method of analysis. Also, the validation method s gave additional new information. Of a total of 120 of ex- posed filter papers used in the official asbestos fibre Air Con 2 sampler, 28 filters had positive presence of asbestos fibres, making it 23 collection efficiency And of the 100 exposed filt er papers used in for E samplers, only 8% collection efficiency was recorded. The results means that the official asbestos fibre Air Con 2 sampler has 23 more collection efficiency than the general particulate matter E sampler for air- borne asbestos monitoring. The impact of these results could also be that a general particulate matter high volume sampler c ould still be used for asbestos fibre monitoring in the absence of a specific and selective Air Con 2 sampler, as long as the user appreciates abo ut 23 collection deficiency. These findings go a long way in helping to make air quality research domain accessible. Since the ASTM D1739:1998 method has been found to perform better than the officially recognized method, this study recommends that the regulators of air quality in the country consider it. But, the method will first require some improvement and standardization particularly the different wind shield designs before it could be officially accepted as the method of collection and analyses for settleable dust. It is hoped that the air quality research community will take up the challenge. / Grond en ander geologiese materiale wat op die aardkors aangetref word, is bekend dat hulle ryk is in silikaatminerale wat natuurlik voorkom. Asbes is een van die veselagtige silikaatminerale wat hoofsaaklik in sommige streke van die Limpopo, Mpumalanga en Noord-Kaap Provinsies in Suid-Afrika ontgin is. Ondanks die staking van asbesmynbou in 2002 as gevolg van gepaardgaande gesondheidseffekte op mense, is daar steeds kommer oor moontlike blootstelling aan asbesvesels in die omgewing. 'n Enkele asbesvesel bestaan uit miljoene mikroskopiese naaldagtige vesels wat maklik breek om partikels van inasembare grootte te produseer wat volgens berigte longsiektes veroorsaak. Die belangrikste bron van asbesvesels in voormalige myngebiede is asbesmynhope en besmette asbesoppervlakgrond. Asbesmynhope in Limpopo Provinsie word gedeeltelik gerehabiliteer, terwyl hulle in Mpumalanga Provinsie nie gerehabiliteer word nie, en al hierdie mynhope is nou onder die regering se toesig omdat die oorspronklike eienaars die mynhope verlaat het. Die neerslagbare stof is die eerste aanduiding van stofbesoedeling in die lug en is gebruik om die terreine wat gemoniteermoet word, te kies. 'n Loodsstudie is uitgevoer om die prestasie van die ASTMD1739:1998 en ASTMD1739:1970 metodes te toets. In die loop van die studie is 'n amptelike ASTMD1739:1970 metode gebruik en toegepas vir die versameling van neerslagbare stofmonsters. In Mpumalanga en Limpopo Provinsies respektiewelik is daar altesaam tien (10) terreine gekies rondom kwesbare menslike nedersettings wat naby die verlate asbesmynhope geleë is. Stofmonsters in die lug, oppervlak en wat vasgevang is, is een keer per maand versamel vanaf April 2016 tot Junie 2017 rondom menslike nedersettings in die nabyheid van die verlate asbesmynhope. Stofmonsters in die lug is versamel volgens die amptelike neerslagbare stofmoniteringsmetode, die E monsternemer en die Air-Con 2 monsternemer. Oppervlakstof is buite met behulp van 'n kwas en stofpan rondom die neerslagbare stofopvangeenhede opgevang en is in gemerkte ritsakke van plastiekmateriaal geberg. Stofmonsters wat vasgevang is, is met behulp van kleeflint, binne en buite, om vensterruite, op meubeloppervlaktes en op voorruitte van ou motors versamel, en is in gemerkte geslote houers geberg. Oppervlakgrondmonsters is ook voor versameling met die draagbare asbesanaliseerder gefilter. Die monsters is breedvoerig en sorgvuldig voorberei en hanteer om kruisbesmetting tot ‘n minimum te beperk deur gebruik te maak van standard laboratoriummetodes en is ontleed met behulp van gekalibreerde analitiese instrumente. 'n Aangepaste metode is gebruik om die teenwoordigheid van asbesgevaar in 'n vorm van mineraaltelling te bepaal. Hierdie metode is ook gebruik vir die identifisering van asbes en ander minerale in verskillende stofmonsters met behulp van die XRD tegniek. Die fisiese kenmerke van alle minerale soos die vorm, grootte en tipe is ook bepaal as deel van die karakteriseringsproses met behulp van die SEM-EDS tegniek. Die ASTMD1739:1998 metode het gelei tot 'n hoër retensie van neerslagbare stof, en daarom is gevind dat dit doeltreffender is. Ongelukkig word hierdie metode wat die beste presteer nie deur die regering gewettig of gereguleer nie. Hierdie navorser kom tot die gevolgtrekking dat die redes kan wees as gevolg van die verskillende vorms van die voorruitontwerpe wat dit moeilik kan maak om dit te standaardiseer en te beheer. Hierdie inligtingsgaping bied egter 'n geleentheid tot 'n langer gefokusde studie van hierdie metode met die doel om 'n gestandaardiseerde voorruitontwerp te vind wat aanbeveel kan word vir gebruik in die land. Tweedens het die eenhede wat beide water en alge-suurwater gehad het, gelei tot 'n hoër neerslagbare stof in Mpumalanga Provinsie. Drie oorskrydings wat in dalende volgorde in Limpopo aangebied is, was 2724 mg/m2/dag op perseel E, 1638 mg/m2/dag op perseel D en 834 mg/m2/dag op perseel B in dieselfde maand van Maart 2017. Die XRF data van metaaloksiede, met inbegrip van hierdie top drie [Si(IV)O2, Fe2(III)O3 en Al2(III)O3], bevestig die oorheersing van silikaatminerale in oppervlakstofmonsters van beide provinsies. Die XRD mineralogiedata van gefiltreerde, neerslagbare stof toon die oorheersing van die amfibool asbesdeeltjies wat wissel tussen 18 en 56 % in Limpopo Provinsie en 2.0 en 3.0 % in Mpumalanga Provinsie. Daar is ‘n lae teenwoordigheid van serpentynminerale met die hoogste onderskeidelik 2.0 % en 7.0 % in die Limpopo en Mpumalanga Provinsies onderskeidelik. Ongeveer 8.0 tot 43 % van die amfibool asbesminerale is op vasgevangde stof in Limpopo gemeet, tesame met geen opsporing van serpentyn. Geen asbesminerale is opgespoor in die vasgevangde stof van Mpumalanga nie, ondanks die nabyheid van die ongerehabiliteerde asbesmynhope. Alle asbesvesels in die lug wat op die filtersubstrate vasgelê is, was bo die grenswaarde van 100 f/mL lug. Die hoogste asbesvesel en konsentrasietellings in die lug gemeet, was 40 vesels en 'n konsentrasie van 2.083 f/mL in Oktober op Terrein A. Die volgende hoogste veseltellingkonsentrasie is in Junie gemeet met 6.590 f/mL op die Terrein A en 5.272 f/mL op die Terrein D moniteringsterreine. In Mpumalanga was die hoogste asbesveselkonsentrasie 2.190 f/mL in Junie en 2.083 f/mL in November op Terrein D. Uit ‘n veiligheidsperspektief is alle asbesvesels of minerale wat ingeasem word egter 'n gevaar vir die mens se gesondheid. Die studie het vasgestel dat die aangepaste asbesmineraaltellingmetode daarin geslaag het om die asbesminerale wat in die neerslagbare stofmonsters uit die studiegebiede bestaan te identifiseer en te kwantifiseer. Hierdie uitkoms is suksesvol bekragtig met die toets wat onderneem is met behulp van die amptelik erkende metode vir die telling van asbesvesel. Die aangepaste mineraaltellingmetode bied aan die navorsingsgemeenskap 'n alternatiewe, koste-effektiewe en gebruikersvriendelike ontledingsmetode. Aangesien daar gevind is dat die ASTMD1739:1998 metode beter presteer as die amptelik erkende metode, beveel hierdie studie aan dat die reguleerders van luggehalte in die land dit oorweeg. Maar die metode sal eers verbetering en standaardisering verg, veral die verskillende windskermontwerpe voordat dit amptelik aanvaar kan word as die metode om neerslagbare stof te versamel en te ontleed. Daar word gehoop dat die gemeenskap wat luggehalte navors die uitdaging sal aanpak. / Mabu le dišomišwa tše dingwe tša bothutaswika tše di hwetšagalago bokagodimo ba Lefase di tsebja di e na le diminerale tše dintši tša tlhago tše di diragalago ka tlhago. Marela ke e ngwe ya diminerale tše di nago le dimela tše di ntši kudu tše di bego di epšwa kudu mafelong a mangwe a diphrofentshe "diphrofentsheng tša Limpopo, Mpumalanga le North Cape Afrika Borwa. Le ge go feditšwe go epšwa marela ka lebaka la ditlamorago tše amanago le maphelo a batho ka 2002, go na le pelaelo malebana le go utullwa ga malwetši a marela. Fibre ke ye ngwe ya marela ye e dirilwego ka maekrosekopiki tše dimilione tše di ka senyegago bonolo go tšweletša khemobonolo yeo e hlamago malwetši a mafahla. Sehlodikgolo sa malwetši a marela mafelong a mathomo ao go bego go le meepo ke sekoti sa marela le mabu a ka godimo ga marela. Dikoti tša meepo ya Marela Phrofentsheng ya Limpopo di mpšhafaditšwe ka tsela ye itšego, eupša Phrofentsheng ya Mpumalanga ga se tša mpšhafatšwa gomme mafelo a ka moka a laolwa ke mmušo gobane beng ba tšona ba di tlogetše. Lerole le ka rarollwago ke sešupopele sa tšhilafalo ya moya e dirwago ka moya gomme se be se šomišwa go kgetha mafelo ao a loketšwego go hlokomelwa. Go ile gwa dirwa tekolo ya go leka tšhomo ya mekgwa ya ASTMD1739: 1998 le ASTM D 1739: 1970. Ge re ntše re tšwela pele ka thuto, go šomišitšwe mokgwa wa semmušo wa ASTM D1739: 1970 gomme wa šomišwa lebakeng la go kgoboketša sampole ya lerole e ka rarollwago. Mafelo a lesome (10) a hweditšwe kgauswi le bodulo ba batho bjo bo lego kotsing ka dikoti tša meepo ya marela di ile tša kgethwa diphrofentsheng tša Mpumalanga le Limpopo ka go latelana. Disampole tša moya tša ka godimo ga lefase, godimo le tše di khutilego di ile tša kgoboketšwa ga tee kgweding kgauswi le bodulo ba batho tše di bego kgauswi kudu le dikoti tša meepo ya marela go tloga ka la 2016 Mopitlo go fihla ka Phupu 2017. Mehuta ya lerole ye sepetšwago ke moya e ile ya kgoboketšwa go šomišwa mokgwa wa semolao wa go tšweletša lerole, E-sampler le sampole ya Air-Con 2. Lerole la ka godimo le be le kgoboketšwa ka ntle go rarela dikarolo tša go kgoboketša lerole go šomišwa poratšhe le pane ya kota gomme le bolokelwa ka mekotleng e nago le zipper ye dirilwego ka polasetiki. Sampole ya lerole le le bego le gaeletšwe le ile la kgoboketšwa ka theipi ya go momela bokagareng le bokantle bja morumofasetere,mabotong a phahlo , le godimo ga galasebokapele dikoloing tša kgale gomme tša bolokwa ka gare ga didirišwa tšeo di makilwego. Disampolo tša mabu a ka godimo di be di hlahlobjwa gape ka mokgwa wa go kgwa ka letsogo ke mohlahlobi wa marela pele go kgoboketšwa. Disampole di be di lokišitšwe kudu ebile di dirilwe ka tlhoko go efoga tšhilafalo ka mekgwa ye tlwaelegilwego ya laporatori gomme ba e hlahloba ba šomiša didirišwa tša go hlahloba. Mokgwa o ikgethilego o šomišwa go hwetša bogona ba kotsi ya marela ka mokgwa wa palo ya diminerale. Mokgwa wo o be o šomišitšwe gape le go bošupong ba marela le diminerale tše dingwe ka gare ga disampole tše di fapanego tša lerole go šomišwa mokgwa wa XRD. Dibepegopono tša diminerale ka moka go swana le sebopego, bogolo le mohuta le tšona di be di tšewa e le karolo ya tshepetšo ya pharodipataka go bogolo le mohuta le tšona di be di tšewa e le karolo ya tshepetšo ya pharodipataka go šomišwa mokgwa wa SEM-EDS. Mokgwa wa ASTMD1739: 1998 o ile wa dira gore go bolokwe lerole le phagameng ka go fetolegago, ka gona go hweditšwe gore le šoma gabotse kudu. Ka bomadimabe, mokgwa wo o tšweletši kudu ge o ngwadišwa ke molao go mmušo. Monyakišiši wo o phetha ka gore mabaka e ka ba ka lebaka la dibopego tše di fapaneng tša meralo ya setsi sa moya se se ka dirago gore go be boima go tseba le go laola. Le ge go le bjalo, sekgoba se sa tshedimošo se fa monyetla wa go ithuta nepišo e telele ya maikemišetšo a go hwetša moralo o tiišitšwego wa moya o ka šišinywago gore o šomišwe ka nageng. Ya bobedi, diyuniti tše di bego di e na le meetsi le algaecide di ile tša tšweletša maemo a phagamego Mpumalanga Phrofentsheng. Ditekanyetšo tše tharo tše di tšweleditše ka tatelano ya taolo e fokotšegago e be e le 2724 mg/ m2/ letšatši go Site E, 1638 mg / m2/ letšatši go Site D le 834 mg/ m2/ letšatši go Site B kgweding ye tee ya Hlakola 2017 Dintlha tša XRF tša di-oxide tša tšhipi, go akaretša tše tše tharo tša godimo [Si (IV) O2, Fe2 (III) O3 le Al2 (III) O3], di tiiša boleng bo phagameng ba diminerale tša silrate mehuteng ya lerole ye e tšwago diphrofentsheng ka bobedi. Dintlha tša XRD tša mineralogy tše di tšwago leroleng le tšhilafatšong di ka tšewa di bontšha phelo ya marela ya amphibole go tloga go 18 go iša go 56% phrofentsheng ya Limpopo le 2.0 go iša go 3.0% phrofentsheng ya Mpumalanga. Bogonatlase ba diminerale tša serpentine tše phagameng ka go fetišiša e le 2.0% le 7.0% diphrofentsheng tša Limpopo le Mpumalanga ka go latelana. Go lekana 8.0 go iša go 43% ya diminerale tša marela tše lekantšwego di ile tša lekanywa leroleng le ageeletšwego ka Limpopo gammogo le go utullwa ga serpentine. Ga go na diminerale tša marela tše di hweditšwego leroleng le ageeletšwego le tšwago Mpumalanga, le ge e le kgauswi kgauswi le dikoti tša mope wa maraba wa marela se a mpšhafatšwago. Mehuta ka moka ya moya ya marela ye e bego e swerwe ka gare ga moya o bego o Mehuta ka moka ya moya ya marela ye e bego e swerwe ka gare ga moya o bego o le ka godimo wa boleng ba moya wa 100 f /mL. Mohuta o phagamego go fetišiša wa moya wa marela le dipalo tša mahlorišo a lekantšwego e be e le tše 40 le bogolo ba 2.083 f /mL ka Diphalane go Site A. Tekanyomahloriš e latelago ya fiber e lekantšwe Phupu ka 6.590 f /mL go Site A le 5.272 f /mL Site D mafelong a tlhahlobo. Nageng ya Mpumalanga, di-fibre tša marela tše phagamego ka go fetišiša e be e le 2.190 f / mL ka Phupu le 2.083 f /mL ka Dibatsela go Site D. Le ge go le bjalo, go latela ponego ya tšhireletšo, fibre ka moka tša marela goba diminerale tše di hengwago di kotsi maphelong a botho. Boithuto bo bo utullotše gore mokgwa wo lekantšwego wa marela o bontšhitšwegošupo o atlegile go kgetholla le go hlakola diminerale tša marela tše di bego di le gona ka gare ga disampolo tša lerole le tšwago mafelong a boithuto. Sephetho se se netefaditšwe katlego le tlhahlobo ye e dirilwego e šomišwago mokgwa wo amogetšwego ke molao wa marela fiber. Mokgwa o lekantšwego wa diminerale o thuša setšhaba sa dinyakišišo ka mokgwa o mongwe wa tlhahlobo ye e šongwago, gabotse e bile ye botho. Go tloga go mokgwa wa ASTM D1739: 1998 o hweditšwe o šoma gabotse go feta mokgwa wo amogetšwego ke molao, thuto ye e šupetša gore balaodi ba boleng ba moya nageng ba e nagane. Empa, mokgwa wo o tla hloka mpšhafatšo le maemo pele kudu meralo ye fapaneng ya thebe ya moya pele e ka amogelwa ke molao e le mokgwa wa go kgoboketša le go sekaseka lerole le le ka rarolwago. Re tshepa gore setšhaba sa dinyakišišo tša boleng ba moya se tla tšea bothata bo. / Mobu le lisebelisoa tse ling tsa jioloji tse fumanehang bokaholimo ba Lefatše li tsejoa li na le liminerale tse ngata tsa tlhaho tse etsahalang ka tlhaho. Asbestos ke e 'ngoe ea liminerale tse nang le silika e ngata e neng e chekoa haholo libakeng tse ling tsa liprofinse tsa "liprofinse tsa Limpopo, Mpumalanga le North Cape Afrika Boroa. Leha ho felisoa morafo oa asbestos ka lebaka la litlamorao tse amanang le bophelo bo botle ba batho ka 2002, ho ntse ho na le ts'oenyeho mabapi le ho pepesetsoa ha tikoloho likhoele tsa asbestos. Fiber e le 'ngoe ea asbestos e entsoe ka likhoele tse limilione tse kang nale tse tsoang habonolo ho hlahisa likaroloana tse sa bonoeng tse tlalehang libaka-mafuamatšo. Mohloli o ka sehloohong oa likhoele tsa asbestos libakeng tseo pele e neng e le tsa meepo ke lithako tsa asbestos le mobu o silafetseng oa asbestos. Likotlo tsa merafo ea Asbestos Profinseng ea Limpopo li nchafalitsoe ka tsela e itseng, athe Profinseng ea Mpumalanga ha e nchafatsoe 'me libaka tsena kaofela li laoloa ke mmuso hobane beng ba tsona ba ba lahlile. Lerōle le ka rarolloang ke letšoao la pele la tšilafalo ea moea e tsoang ka moea mme le ne le sebelisetsoa ho khetha libaka tseo li lokelang ho-shebelloa. Ho ile ha etsoa boithuto ba ho leka ts'ebetso ea mekhoa ea ASTMD1739: 1998 le ASTM D 1739: 1970. Ha re ntse re tsoela pele ka thuto, ho sebelisitsoe mokhoa oa semmuso oa ASTM D1739: 1970 'me oa sebelisoa bakeng sa ho bokella sampole ea lerōle e ka rarolloang. Sebaka sa libaka tse leshome (10) tse fumanehang haufi le bolulo ba batho ba tlokotsing tse haufi le libaka tse lahliloeng tsa meepo ea asbestos li ile tsa khethoa liprofinseng tsa Mpumalanga le Limpopo ka ho latellana. Lisampole tsa moea tse ka holim'a lefatše, holimo le tse patiloeng li ile tsa bokelloa hang ka khoeli ho potoloha libaka tsa bolulo tsa batho tse haufi haholo le libaka tse lahliloeng tsa moepo oa asbestos ho tloha ka Mmesa 2016 ho fihlela ka Phuptjane 2017. Mefuta ea lerōle e tsamaisoang ke moea e ile ea bokelloa ho sebelisoa mokhoa oa semolao oa ho hlahisa lerōle, E-sampler le sampole ea Air-Con 2. Lerōle le kaholimo le ne le bokelloa ka ntle ho potoloha likarolo tsa ho bokella lerōle le sebelisa brashi le pane ea patsi mme le bolokiloe ka mekotleng e nang le zipper e entsoeng ka thepa ea polasetiki. Mehlala ea lerōle e neng e tšoasehile e ile ea bokelloa ho sebelisoa theipi e khangoang ka tlung le kantle kahare ho lifensetere, ka holim'a thepa ea ka tlung le lifensetereng tsa likoloi tsa khale 'me li bolokiloe ka har'a lisebelisoa tse koetsoeng. Meetso ea mobu e kaholimo le eona e ile ea hlahlojoa ka letsoho le ts'oaroang ka asbestos pele ho pokello. Mehlala e ne e hlophisitsoe haholo ebile e entsoe ka hloko ho qoba ho silafatsa kapa ho fokotsa tšilafalo ea tšebeliso ea mekhoa e tloaelehileng ea laboratori mme e ile ea hlahlojoa ho sebelisoa lisebelisoa tsa tekanyetso. Mokhoa o ikhethileng o sebelisitsoe ho fumana ho ba teng ha kotsi ea asbestos ka mokhoa oa palo ea liminerale. Mokhoa ona o ne o boetse o sebelisoa bakeng sa ho khetholla asbestos le liminerale tse ling ka har'a disampole tse fapaneng tsa lerōle ho sebelisoa mokhoa oa XRD. Litšobotsi tsa 'mele tsa liminerale tsohle tse kang sebopeho, boholo le mofuta le tsona li ne li nkuoa e le karolo ea ts'ebetso ea sebopeho ho sebelisa mokhoa oa SEM-EDS. Mokhoa oa ASTMD1739: 1998 o ile oa etsa hore ho bolokoe lerōle le phahameng ka ho fetelletseng, ka hona ho fumanoe hore le sebetsa hantle haholo. Ka bomalimabe, mokhoa ona o atlehileng ka ho fetisisa ha o ngolisoe ke molao kapa 'muso. Mofuputsi enoa o phethela ka hore mabaka a ka ba teng ka lebaka la sebopeho se fapaneng sa meralo ea setsi sa moea se ka etsang hore ho be thata ho tseba le ho laola. Leha ho le joalo, lekhalo lena la tlhaiso-leseling le fana ka monyetla oa ho ithuta ho tsepameng molemong oa mokhoa ona ka sepheo sa ho fumana moralo o tiisitsoeng oa moea o ka khothalletsoang hore o sebelisoe ka har'a naha. Ya bobedi, diyuniti tse neng di na le metsi le algaecide li ile tsa hlahisa maemo a phahameng a ho tsetsahala Mpumalanga. Litekanyetso tse tharo tse fanoeng ka tatellano ea taolo e fokotsehang e ne e le 2724 mg/ m2/ letsatsi ho Site E, 1638 mg /m2/ letsatsi ho Site D le 834 mg / m2/letsatsi ho Site B ka khoeli e tšoanang ea Hlakubele 2017. Lintlha tsa XRF tsa li-oxide tsa tšepe, ho kenyelletsa tsena tse tharo tse holimo [Si (IV) O2, Fe2 (III) O3 le Al2 (III) O3], li tiisa boleng bo phahameng ba liminerale tsa silrate mefuteng ea lerōle e tsoang liprofinseng ka bobeli. Lintlha tsa XRD tsa mineralogy tse tsoang lerōleng le ts'ilafatsoang li ka nkuoa li bonts'a phello ea asbestos ea amphibole ho tloha ho 18 ho isa ho 56% profinseng ea Limpopo le 2.0 ho isa ho 3.0% profinseng ea Mpumalanga. Boteng bo tlase ba liminerale tsa linoha tse phahameng ka ho fetisisa e le 2.0% le 7.0% liprofinseng tsa Limpopo le Mpumalanga ka ho latellana. Hoo e ka lerōleng le ts'oaroang ho la Limpopo hammoho le ho sibolloa ha noha. Ha ho na liminerale tsa asbestos tse fumanoeng lerōleng le tsubelletsoeng le tsoang Mpumalanga, leha ho le haufi le marang-rang a litopo tsa asbestos tse sa ntlafatsoang. Mefuta eohle ea moea e kang asbestos e neng e hapiloe kahare ho moea o ne o le kaholimo ho boleng ba moea oa 100 f /mL. Mofuta o phahameng ka ho fetisisa oa moea oa asbestos le lipalo tsa mahloriso tse lekantsoeng e ne e le likhoele tse 40 le boholo ba 2.083 f /mL ka Mphalane ho Site A. Khakanyo e latelang ea fiber fiber e latelang e lekantsoe ka Pherekhong ka 6.590 f /mL ho Site A le 5.272 f /mL setsing D libaka tsa tlhahlobo. Naheng ea Mpumalanga, li-fiber tsa asbestos tse phahameng ka ho fetisisa e ne e le 2.190 f /mL ka Phuptjane le 2.083 f /mL ka Pulungoana ho Site D. Leha ho le joalo, ho latela pono ea ts'ireletso, likhoele tsohle tsa asbestos kapa liminerale tse kentsoeng li kotsi bophelong ba motho. Boithuto bo fumane hore mokhoa o lekantsoeng oa "asbestos" o ntlafalitsoeng o atlehile ho tseba le ho hlakisa liminerale tsa asbestos tse neng li le teng ka har'a mehlala ea lerōle e tsoang libakeng tsa boithuto. Sephetho sena se netefalitsoe ka katleho le tlhahlobo e entsoeng e sebelisang mokhoa o amohetsoeng ka molao oa asbestos fiber count. Mokhoa o lekantsoeng oa liminerale o thusa sechaba sa lipatlisiso ka mokhoa o mong oa tlhahlobo o sebetsang, o sebetsang hantle ebile o sebelisang botsoalle. Ho tloha ha mokhoa oa ASTM D1739: 1998 o fumanoe o sebetsa hantle ho feta mokhoa o amohetsoeng ka molao, thuto ena e khothaletsa hore batsamaisi ba boleng ba moea naheng ba e nahane. Empa, mokhoa ona o tla hloka ntlafatso le maemo pele haholo mealo e fapaneng ea thebe ea moea pele e ka amoheloa ka molao e le mokhoa oa ho bokella le ho sekaseka lerōle le ka rarolloang. Re tšepa hore sechaba sa lipatlisiso tsa boleng ba moea se tla nka bothata bona. / Environmental Science / Ph. D. (Environmental Sciences)

Page generated in 0.0876 seconds