Spelling suggestions: "subject:"minkowski"" "subject:"linkowski""
31 |
Introduction to fractal dimensionAburamyah, Ghder January 1900 (has links)
Master of Science / Department of Mathematics / Hrant Hakobyan / When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 40 years, this small branch of mathematics has developed extensively. Fractals can be defined as those sets which have non-integer Hausdorff or Minkowski dimension. In this report, we introduce certain definitions of fractal dimensions, which can be used to measure a set’s fractal degree. We introduce Minkowski dimension and Hausdorff dimension and explore some examples where they coincide, as well as other examples where they do not.
|
32 |
Selected Problems from Minkowski GeometryDüvelmeyer, Nico 24 November 2006 (has links) (PDF)
Die Dissertation behandelt zwei Gebiete der Geometrie endlichdimensionaler
Banach-Räume (Minkowski-Geometrie).
Der erste Schwerpunkt liegt dabei auf Winkelmassen und Winkelhalbierenden.
Dafür gibt es verschiedene Verallgemeinerungen dieser Euklidischen
Konzepte, die im allgemeinen in Minkowski-Räumen verschieden sind.
Es werden alle Minkowski-Räume charakterisiert, in welchen zwei dieser
Konzepte für alle möglichen Winkel das selbe Maß oder die selben
Winkelhalbierenden liefern.
Der zweite Teil der Dissertation behandelt die Einbettung von metrischen
Räumen in Minkowski-Räume. Dabei steht die Einbettung in beliebige geeignete
Minkowski-Räume fester Dimension im Mittelpunkt.
Hauptergebnis ist hier die vollständige Klassifikation aller 2-Abstands-Mengen
in Minkowski-Ebenen, d.h., aller möglichen Mengen von Punkten
einer Minkowski-Ebene, so dass zwischen diesen Punkten nur zwei verschiedene
positive Abstandswerte auftreten. / This dissertation deals with two geometric subjects in finite dimensional
Banach spaces (Minkowski geometry).
The first topics are angle measures and angular bisectors. There are several
possibilities to generalize these Euclidean concepts, which yield in general
distinct geometrical objects in Minkowski spaces. A characterization is given
for Minkowski spaces, for which two such concepts yield for all possible
angles the same angular measure or the same angular bisector.
The second part of the dissertation deals with embeddings of metric spaces
into Minkowski spaces. It focuses on embeddings into some arbitrary suitable
Minkowski space of prescribed dimension. The major result is the complete
classification of all 2-distance sets in Minkowski planes, i.e., of all subsets
of points of a Minkowski plane such that there are only two different positive
distance values between these points.
|
33 |
Algorithms for Collision Hulls and their Applications to Path PlanningZane Smith Unknown Date (has links)
The potential benefits that automation could bring to a wide variety of real-world tasks are numerous and well recognised. There has been significant research undertaken into automation in general, but for real-time automation of complex systems (involving complex geometries and dynamics) the problem is far from a solved one. One of the key tasks in a surface mining operation is that of using shovels or excavators to load material onto haul trucks for transportation. Since it is such a crucial task to a number of production cycles, it is a clear area where the productivity and safety benefits of automation could have a large impact. A number of projects are being undertaken concurrently to move towards first partial, and then full, automation of this mining subsystem. This thesis focusses on the collision avoidance problem, specifically on forming a collision hull that distinguishes between intersecting and non-intersecting configurations of two objects. Techniques from computer graphics are leveraged to develop a data structure that stores and organises relevant information about real-world systems for motion-planning tasks, ensuring that the necessary data is available and in a form suited to the task at hand. The Minkowski Sum operation, which can be used fairly directly to form the collision hull of two convex objects under translation, is extended to develop an operation to form the exact collision hull of two arbitrary objects to determine the applicability of such a scheme to complex systems in real-time. A level of detail solution is then proposed, where the Minkowski Hull of bounding hierarchies allows unnecessary parts of the hull to be calculated only in a coarse manner, thus offsetting a lot of the computational cost for any given test. This approach is investigated for both translational motion and joint-space motion. Collision detection is not collision avoidance, and so the algorithms developed in the thesis are tested in a number of applications, to demonstrate their suitability to the collision avoidance task. The applications (discrete collision prediction, visibility graph path planning, and the formulation of a Model Predictive Controller) are restricted versions of the true problems with some simplifying assumptions, but they show the algorithms to be capable both in their execution speed and the information that they provide.
|
34 |
Simulation algorithms for fractal radiationCamps Raga, Bruno F., Islam, Naz E. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 11, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Naz E. Islam Vita. Includes bibliographical references.
|
35 |
Geometria e simetrias do emaranhamentoBraga, Helena Carolina 20 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:15:24Z (GMT). No. of bitstreams: 1
3933.pdf: 1253578 bytes, checksum: 2e845487ed5ee8bb092282a8badc7bc3 (MD5)
Previous issue date: 2011-05-20 / Universidade Federal de Sao Carlos / In the present work we present a geometric method to identify and measure the degree of entanglement of a two-qubit state. It is based on writing a map of the system state, from a non-unitary transformation. By introducing new parameters for such 4X4 matrix, the product of eigenvalues, two by two, acquire the form of squared 4D distances, having a Minkowski metric. If the squared distance is of the kind timelike, i.e.non-negative, the two-qubit system is separable. Otherwise, if it is spacelike, namely, the squared distance is negative, the two qubits are entangled. Besides being invariant by unitary transformations on the system state, the distances can be represented in a hyperbolic parameterized phase space, allowing a suitable graphic representation, i. e., in a phase space where the system trajectories can be drawn. The method is extended to a large class of 4x4 positive matrices having at most seven independent parameters, the D-7 manifold class. Using group theory methods we classify these states according to the symmetries of seven generators, where one of them commutes with the others. We illustrate the method and the theory by presenting several two-qubit systems found in the literature. We also study the symmetry breaking and the criticality in two-qubit Heisenberg Models, looking for signatures of quantum phase transitions in terms of the squared distances as well as in its derivatives. / O presente trabalho apresenta um método geométrico de caracterização e quanti.- cação de emaranhamento para sistemas de dois qubits baseado em mapas não unitários. Introduzimos novos parâmetros para o operador densidade de estados, de tal forma que o produto dos autovalores, dois a dois, adquirisse a forma de distâncias quadráticas no espaço quadridimensional, estas distâncias obedecem a métrica de Minkowski. Quando tais distâncias quadráticas forem não negativas o sistema é dito separável, por outro lado quando forem negativas o sistema está emaranhado. As distâncias quadráticas propostas são invariantes por transformações unitárias e podem ser representadas gra.camente em um espaço de fase hiperbólico parametrizado, onde uma análise quantitativa pode ser realizada e até mesmo trajetórias podem ser traçadas. O método é extendido para uma classe maior de estados de variedade D-7; isto é, com até sete parâmetros independentes, através do uso de teoria de grupos, onde classi.camos os estados de acordo com as sime- trias de seus sete geradores, sendo que um deles comuta com todos os outros. O método é ilustrado ao longo do trabalho com uma série de exemplos presentes na literatura. Por .m, estudamos as quebras de simetria em sistemas de Heisenberg de dois qubits procurando assinaturas de transições de fase quânticas de primeira ordem nas distâncias propostas e em suas derivadas.
|
36 |
Teorema de Schur no plano de Minkowski e caracterização de hélices inclinadas no espaço de MinkowskiRamos, Luciano de Melo 27 June 2013 (has links)
Made available in DSpace on 2016-06-02T20:28:28Z (GMT). No. of bitstreams: 1
5368.pdf: 682883 bytes, checksum: 5c5cfc6294b1e5bb055b5a66c6f09101 (MD5)
Previous issue date: 2013-06-27 / Financiadora de Estudos e Projetos / A classical theorem of differential geometry of curves in Euclidean space is the Schur's Theorem, that was proof by A. Schur in 1921, when both curvatures agree pointwise [3]. The proof in the general case was proved in 1925 by E. Schmidt in [4]. The first objective in this dissertation is to present Lorentzian version of Schur's Theorem in the Minkowski plane. Then we will show some applications due to R. López [1]. In the Minkowski space we will see that the Schur's Theorem is false. The second objective is show a characterization of slant helices in the Minkowski space obtained by A. T. Ali and R. López in [2], which extends naturally a characterization of slant helices in Euclidean space obtained in 2004 by S. Izumiya And N. Takeuchi [6]. We conclude with an application that characterization of slant helices [2]. / Um resultado clássico da geometria diferencial de curvas no espaço euclidiano é o Teorema de Schur, que primeiro foi provado em 1921 por A. Schur em [3] no caso em que as curvaturas das curvas coincidem pontualmente. O caso geral do teorema foi provado em 1925 por E. Schmidt em [4]. O primeiro objetivo desta dissertação é apresentar uma versão do Teorema de Shur para o plano de Minkowski. Em seguida, mostraremos algumas aplicações desse resultado feitas por R. López em [1]. No caso do espaço de Minkowski veremos que o Teorema de Schur é falso. O segundo objetivo é mostrar uma caracterização das hélices inclinadas no espaço de Minkowski obtidas por A. T. Ali e R. López em [2], a qual estende de forma natural a caracterização de hélices inclinadas no espaço euclidiano obtida em 2004 por S. Izumiya e N. Takeuchi [6]. Concluímos esta dissertação provando uma caracterização de hélices inclinadas obtida em [2].
|
37 |
The Abraham-Minkowski controversy and He-McKellar-Wilkens phaseMiladinovic, Nikola January 2017 (has links)
This thesis investigates the long-standing Abraham-Minkowski controversy concerning the momentum of light inside a dielectric medium. A revealing connection to the optical He-McKellar-Wilkens (HMW) phase is found upon studying the Langrangian describing the classical laser-atom interaction. This connection is further highlighted by moving into a semi-classical model in which the phase arises as a result of the transformation between the Abraham and Minkowski Hamiltonians. The HMW along with the Aharonov-Casher phases are found to be both dynamic and geometric depending on the representation. It is shown that an optical version of the HMW phase is acquired by a dipole moving in a laser beam, and I propose several interferometric schemes in order to observe the optical HMW effect. Finally, by moving into a cavity system, it is possible to account for the back action of the atoms on the light which changes the electromagnetic mode structure. This increase in model sophistication grants an alternative vantage from which to interpret the Abraham-Minkowski problem. / Thesis / Doctor of Philosophy (PhD)
|
38 |
The Brunn-Minkowski Inequality and Related ResultsMullin, Trista A. 25 June 2018 (has links)
No description available.
|
39 |
Geometric Applications of Linear and Nonlinear Potential TheoryFogagnolo, Mattia 13 February 2020 (has links)
We provide geometric inequalities on $R^n$ and on general manifolds with nonnegative Ricci curvature by employing suitable monotone quantities along the flow of capacitary and $p$-capacitary potentials, as well as through related boundary value problems. Among the main achievements, we cite
[(i)] a Willmore-type inequality on manifolds with nonnegative Ricci curvature leading in turn to the sharp Isoperimetric Inequality on $3$-manifolds with nonnegative Ricci curvature ;
[(ii)] enhanced Kasue/Croke-Kleiner splitting theorems ;
[(iii)] a generalised Minkowski-type inequality in $R^n$ holding with no assumptions on the boundary of the domain considered except for smoothness ;
[(iv)] a complete discussion of maximal volume solutions to the least area problem with obstacle on Riemannian manifolds and its relation
with the variational $p$-capacity.
|
40 |
Stratégies de mise en oeuvre des polytopes en analyse de tolérance / STRATEGIES OF POLYTOPES IMPLEMENTATION IN TOLERANCE ANALYSISHomri, Lazhar 13 November 2014 (has links)
En analyse de tolérances géométriques, une approche consiste à manipuler des polyèdres de R' issus d’ensembles de contraintes linéaires. La position relative entre deux surfaces quelconques d'un mécanisme est déterminée par des opérations (somme de Minkowski et intersection) sur ces polyèdres. Ces polyèdres ne sont pas bornés selon les déplacements illimités dus aux degrés d’invariance des surfaces et aux degrés de liberté des liaisons.Dans une première partie sont introduits des demi-espaces "bouchons" destinés à limiter ces déplacements afin de transformer les polyèdres en polytopes. Cette méthode implique de maîtriser l’influence des demi-espaces bouchons sur la topologie des polytopes résultants. Ceci est primordial pour garantir la traçabilité de ces demi-espaces dans le processus d’analyse de tolérances.Une seconde partie dresse un inventaire des problématiques de mise en oeuvre numérique des polytopes. L’une d’entre elles repose sur le choix d’une configuration de calcul (point et base d’expression, coefficients d’homogénéisation) pour définir un polytope. Après avoir montré que le changement de configuration de calcul est une transformation affine, plusieurs stratégies de simulations sont déclinées afin d’appréhender les problèmes de précision numérique et de temps de calculs. / In geometric tolerancing analysis area, a classical approach consists in handling polyhedrons coming from sets of linear constraints. The relative position between any two surfaces of a mechanism is determined by operations (Minkowski sum and intersection) on these polyhedrons. The polyhedrons are generally unbounded due to the inclusion of degrees of invariance for surfaces and degrees of freedom for joints defining theoretically unlimited displacements.In a first part are introduced the cap half-spaces to limit these displacements in order to transform the polyhedron into polytopes. This method requires controlling the influence of these additional half-spaces on the topology of calculated polytopes. This is necessary to ensure the traceability of these half-spaces through the tolerancing analysis process.A second part provides an inventory of the issues related to the numerical implementation of polytopes. One of them depends on the choice of a computation configuration (expression point and base, homogenization coefficients) to define a polytope. After proving that the modification of a computation configuration is an affine transformation, several simulation strategies are listed in order to understand the problems of numerical precision and computation time.
|
Page generated in 0.0514 seconds