• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 26
  • 14
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 29
  • 23
  • 17
  • 17
  • 17
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Formulação em termos de espinores de duas componentes da teoria eletromagnética clássica / Two-component spinor formulation of the maxwell theory

Palaoro, Denilso 29 May 2009 (has links)
Made available in DSpace on 2016-12-12T20:15:53Z (GMT). No. of bitstreams: 1 Resumo - Denilso.pdf: 6952 bytes, checksum: d64faf1cec322aeb51d49ed61bf9358e (MD5) Previous issue date: 2009-05-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work the two-component spinor formulation of the classical theory of electromagnetic fields is presented. In particular, we obtain explicitly the wave equa-tion for photons of both helicities. For this purpose, we present first the formulation of the theory in Minkowski spacetime together with the homomorphism between SL(2;C) and the restricted Lorentz group. / Neste trabalho apresentaremos a formulação da teoria eletromagnética clássica em termos de espinores de duas componentes. Em particular, obteremos explicitamente as equações de onda para fotons de ambas helicidades. Para isso, primeiro trataremos explicitamente da formulação covariante da teoria eletromagnética clássica. Explicitaremos também o homomorfismo entre o grupo SL(2,C) e o grupo de Lorentz restrito.
42

[en] ISOPERIMETRIC PROBLEMS IN THE MINKOWSKI PLANE / [pt] PROBLEMAS ISOPERIMÉTRICOS NO PLANO DE MINKOWSKI

MARCELO CHAVES SILVA 13 January 2016 (has links)
[pt] O objetivo principal deste trabalho é resolver o problema isoperimétrico no plano de Minkowski, isto é, determinar dentre todas as curvas convexas, fechadas, simples e suaves de perímetro fixo de um plano munido com uma norma qualquer, qual é aquela que delimita a maior área. Mostraremos que a solução para este problema não é necessariamente o círculo como no caso euclideano e sim uma curva conhecida como isoperimetrix. Para isto, vamos demonstrar a desigualdade de Minkowski a partir do conceito de área mista. Em seguida, vamos determinar se há outros casos (além do caso euclideano) em que o círculo coincide com o isoperimetrix. Também iremos mostrar que o perímetro da bola nestes planos pode assumir qualquer valor real entre seis e oito, sendo seis quando a bola for um hexágono regular afim e oito quando for um paralelogramo. / [en] The main objective of this work is to solve the isoperimetric problem in the Minkowski plane, i. e., determine among all smooth simple closed convex curves of a normed plane with fixed perimeter, what is that which defines the largest area. We will show that the solution to this problem is not necessarily the circle as in the Euclidean case, but a curve known as isoperimetrix. For this, we will demonstrate the Minkowski inequality from the concept of mixed area. Then, we determine if there are other cases (apart from the Euclidean case) in which the circle coincides with the isoperimetrix. We will also show that the ball perimeter in a normed plane can take any real value between six and eight. It is six when the ball is an affine regular hexagon and eight when it is a parallelogram.
43

Polyhedral models reduction in geometric tolerance analysis / Réduction de modèles polyédriques pour l’analyse de tolérances géométriques

Arroyave-Tobón, Santiago 10 November 2017 (has links)
L’analyse de tolérances par des ensembles de contraintes repose sur la détermination de l’accumulation de variations géométriques par des sommes et intersections d’ensembles opérandes 6d. Les degrés de liberté des liaisons et les degrés d’invariance des surfaces génèrent des opérandes non-bornés (polyèdres), posant des problèmes de simulation. En 2014, L. Homria proposé une méthode pour résoudre ce problème, consistant à ajouter des limites artificielles(contraintes bouchon) sur les déplacements non-bornés. Même si cette méthode permet la manipulation d’objets bornés (polytopes), les contraintes bouchon augmentent la complexité des simulations. En réponse à cette difficulté, une méthode dérivée est proposée dans cette thèse.Cette méthode consiste à tracer et simplifier les contraintes bouchon au travers des opérations.Puis une seconde stratégie basée sur la décomposition d’un polyèdre en une somme d’un polytope et de lignes droites (associées aux déplacements non-bornés). Cette stratégie consiste à simuler d’une part les sommes de droites, et d’autre part, à déterminer la somme de polytopes dans un sous-espace de dimension inférieur à 6. Ces trois stratégies sont comparées au travers d’une application industrielle. Cela montre que la traçabilité des contraintes bouchons est un aspect fondamental pour contrôler leur propagation et pour réduire le temps de calcul des simulations. Toutefois, cette méthode exige encore de déterminer les limites des déplacements non-bornés. La deuxième méthode, adaptant systématiquement la dimension de l’espace de calcul, elle permet de diminuer davantage le temps de calcul. Ce travail permet d’envisager la mise en oeuvre de cette méthode selon des formulations statistiques avec la prise en compte des défauts de forme des surfaces. / The cumulative stack-up of geometric variations in mechanical systems can be modelled summing and intersecting sets of constraints. These constraints derive from tolerance zones or from contact restrictions between parts. The degrees of freedom (DOF) of jointsgenerate unbounded sets (i.e. polyhedra) which are difficult to deal with. L. Homri presented in 2014 a solution based on the setting of fictitious limits (called cap constraints) to each DOFto obtain bounded 6D sets (i.e. polytopes). These additional constraints, however, increase the complexity of the models, and therefore, of the computations. In response to this situation,we defined a derived strategy to control the effects of the propagation of the fictitious limits by tracing and simplifying the generated, new cap constraints. We proposed a second strategy based on the decomposition of polyhedra into the sum of a polytope and a set of straight lines.The strategy consists in isolating the straight lines (associated to the DOF) and summing the polytopes in the smallest sub-space. After solving an industrial case, we concluded that tracing caps constraints during the operations allows reducing the models complexity and,consequently, the computational time; however, it still involves working in 6d even in caseswhere this is not necessary. In contrast, the strategy based on the operands decompositionis more efficient due to the dimension reduction. This study allowed us to conclude that the management of mechanisms’ mobility is a crucial aspect in tolerance simulations. The gain on efficiency resulting from the developed strategies opens up the possibility for doing statistical treatment of tolerances and tolerance synthesis.
44

Funcionais paramÃtricos elÃpticos em variedades riemannianas / Elliptic parametric functional in manifolds riemannian

Marcelo Ferreira de Melo 07 August 2009 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, consideramos funcionais paramÃtricos elÃpticos como generalizaÃÃes naturais para o clÃssico funcional Ãrea. Calculamos a primeira variaÃÃo de tais funcionais e, a partir da equaÃÃo de Euler-Lagrange, definimos a curvatura mÃdia anisotrÃpica de uma hipersuperfÃcie imersa em uma variedade Riemanniana como generalizaÃÃo natural da curvatura mÃdia usual. Em seguida, estabelecemos a fÃrmula da segunda variaÃÃo e classificamos as hipersuperfÃcies rotacionalmente simÃtricas que possuem curvatura mÃdia anisotrÃpica constante. A fim de compreender a estabilidade dos exemplo rotacionais,deduzimos a primeira e a segunda fÃrmulas de Minkowski. AlÃm disso, no contexto anisotrÃpico, apresentamos as equaÃÃes fundamentais de Weingarten, Codazzi e Gauss e, por fim, estudamos a harmonicidade da aplicaÃÃo de Gauss. / It is stated that critical points of a parametric elliptic functional in a Riemannian manifold are hypersurfaces with prescrebed anisotropic mean curvature. We prove that the anisotropic Gauss map of surfaces immersed in Euclidean space with constant anisotropic mean curvature is a harmonic map. In the case of rotatioally invariat functionals in some homogeneous three-dimensional ambients, we present a abridged version of a existence result for constant anisotropic mean curvature surfaces as cylinders, spheres, tori and annuli corresponding to the anisotropic analogs of onduloids and nodoids. In the Euclidean case M = R3, examples of stable critical points are provided by the Wulff shapes associated to functional F. Paralleling the case of constant curvature mean spheres, a characterization of Wulff shapes is provided, which answers affirmatively a question posed by M. Koiso and B. Parmer in [13].
45

Um teorema de rigidez para hipersuperfÃcies cmc completas em variedades de Lorentz / A rigidity theorem for complete hypersurfaces in Lorentz manifolds

Kelton Silva Bezerra 10 March 2009 (has links)
O objetivo deste trabalho à apresentar um teorema de classificaÃÃo para hipersuperfÃcies completas e de curvatura mÃdia constante em variedades de Lorentz de curvatura seccional constante, sob certas limitaÃÃes da curvatura escalar. Para isto usaremos a fÃrmula de Simons, que nos dà uma relaÃÃo entre as transformaÃÃes de Newton Pr e o laplaciano da norma ao quadrado do operador de Weingarten Ã, e um princÃpio do mÃximo devido H. Omori e S. T. Yau. Como primeira aplicaÃÃo obtemos uma classificaÃÃo das hipersuperfÃcies tipo-espaÃo completas e de curvatura mÃdia constante no espaÃo de De Sitter, com curvatura escalar R maior ou igual a 1. ConcluÃmos tambÃm que toda hipersuperfÃcie tipo-espaÃo completa e de curvatura mÃdia constante positiva do espaÃo de Lorentz-Minkowski, com curvatura escalar nÃo-negativa, à um cilindro sobre uma curva plana e, a menos de isometrias, determinamos tal curva. / Our aim in this work is to show a classification theorem for complete CMC hipersurfaces in Lorentz manifolds of constant sectional curvature, under certains bounds on the scalar curvature. To this end we use Simons formula, wich gives a relation between Newton transformations and the Laplacian of the squared norm of the Weingarten operator A, as well as a maximum principle due to H. Omori and S. T. Yau. We obtain, as a first application, a classification of complete spacelike CMC hypersurfaces of the De Sitter space, having scalar curvature R maior ou igual a 1. We also conclude that all complete spacelike hypersurfaces with positive constant mean curvature and nonegative scalar curvature in the Lorentz-Minkowski space are cylinders over a plane curve and, up to isometries, we determine this curve.
46

Géométrie des mesures convexes et liens avec la théorie de l’information / Geometry of convex measures and links with the Information theory

Marsiglietti, Arnaud 24 June 2014 (has links)
Cette thèse est consacrée à l'étude des mesures convexes ainsi qu'aux analogies entre la théorie de Brunn-Minkowski et la théorie de l'information. Je poursuis les travaux de Costa et Cover qui ont mis en lumière des similitudes entre deux grandes théories mathématiques, la théorie de Brunn-Minkowski d'une part et la théorie de l'information d'autre part. Partant de ces similitudes, ils ont conjecturé, comme analogue de la concavité de l'entropie exponentielle, que la racine n-ième du volume parallèle de tout ensemble compact de $R^n$ est une fonction concave, et je résous cette conjecture de manière détaillée. Par ailleurs, j'étudie les mesures convexes définies par Borell et je démontre pour ces mesures une inégalité renforcée de type Brunn-Minkowski pour les ensembles convexes symétriques. Cette thèse se décompose en quatre parties. Tout d'abord, je rappelle un certain nombre de notions de base. Dans une seconde partie, j'établis la validité de la conjecture de Costa-Cover sous certaines conditions et je démontre qu'en toute généralité, cette conjecture est fausse en exhibant des contre-exemples explicites. Dans une troisième partie, j'étends les résultats positifs de cette conjecture de deux manières, d'une part en généralisant la notion de volume et d'autre part en établissant des versions fonctionnelles. Enfin, je prolonge des travaux récents de Gardner et Zvavitch en améliorant la concavité des mesures convexes sous certaines hypothèses telles que la symétrie / This thesis is devoted to the study of convex measures as well as the relationships between the Brunn-Minkowski theory and the Information theory. I pursue the works by Costa and Cover who highlighted similarities between two fundamentals inequalities in the Brunn-Minkowski theory and in the Information theory. Starting with these similarities, they conjectured, as an analogue of the concavity of entropy power, that the n-th root of the parallel volume of every compact subset of $R^n$ is concave, and I give a complete answer to this conjecture. On the other hand, I study the convex measures defined by Borell and I established for these measures a refined inequality of the Brunn-Minkowski type if restricted to convex symmetric sets. This thesis is split in four parts. First, I recall some basic facts. In a second part, I prove the validity of the conjecture of Costa-Cover under special conditions and I show that the conjecture is false in such a generality by giving explicit counterexamples. In a third part, I extend the positive results of this conjecture by extending the notion of the classical volume and by establishing functional versions. Finally, I generalize recent works of Gardner and Zvavitch by improving the concavity of convex measures under different kind of hypothesis such as symmetries
47

Geometry of Minkowski Planes and Spaces -- Selected Topics

Wu, Senlin 13 November 2008 (has links)
The results presented in this dissertation refer to the geometry of Minkowski spaces, i.e., of real finite-dimensional Banach spaces. First we study geometric properties of radial projections of bisectors in Minkowski spaces, especially the relation between the geometric structure of radial projections and Birkhoff orthogonality. As an application of our results it is shown that for any Minkowski space there exists a number, which plays somehow the role that $\sqrt2$ plays in Euclidean space. This number is referred to as the critical number of any Minkowski space. Lower and upper bounds on the critical number are given, and the cases when these bounds are attained are characterized. Moreover, with the help of the properties of bisectors we show that a linear map from a normed linear space $X$ to another normed linear space $Y$ preserves isosceles orthogonality if and only if it is a scalar multiple of a linear isometry. Further on, we examine the two tangent segments from any exterior point to the unit circle, the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, the distances from the normalization of the sum of two unit vectors to those two vectors, and the extension of the notions of orthocentric systems and orthocenters in Euclidean plane into Minkowski spaces. Also we prove theorems referring to chords of Minkowski circles and balls which are either concurrent or parallel. All these discussions yield many interesting characterizations of the Euclidean spaces among all (strictly convex) Minkowski spaces. In the final chapter we investigate the relation between the length of a closed curve and the length of its midpoint curve as well as the length of its image under the so-called halving pair transformation. We show that the image curve under the halving pair transformation is convex provided the original curve is convex. Moreover, we obtain several inequalities to show the relation between the halving distance and other quantities well known in convex geometry. It is known that the lower bound for the geometric dilation of rectifiable simple closed curves in the Euclidean plane is $\pi/2$, which can be attained only by circles. We extend this result to Minkowski planes by proving that the lower bound for the geometric dilation of rectifiable simple closed curves in a Minkowski plane $X$ is analogously a quarter of the circumference of the unit circle $S_X$ of $X$, but can also be attained by curves that are not Minkowskian circles. In addition we show that the lower bound is attained only by Minkowskian circles if the respective norm is strictly convex. Also we give a sufficient condition for the geometric dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.
48

Curvas no espaço de Minkowski / Curves in the Minkowski space

Sacramento, Andrea de Jesus 27 March 2015 (has links)
Nesta tese, investigamos a geometria de curvas no 3-espaço e no 4-espaço de Minkowski usando a teoria de singularidades, mais especificamente, a teoria de contato. Para isto, estudamos as famílias de funções altura e de funções distância ao quadrado sobre as curvas. Os conjuntos discriminantes e conjuntos de bifurcação destas famílias são ferramentas essenciais para o desenvolvimento deste trabalho. Para curvas no 3-espaço de Minkowski, estudamos seus conjuntos focais e conjunto de bifurcação da família de funções distância ao quadrado sobre estas curvas para investigar o que acontece próximo de pontos tipo luz. Estudamos também os conjuntos focais e conjuntos de bifurcação esféricos de curvas nos espaços de Sitter do 3-espaço e do 4-espaço de Minkowski. Definimos imagens normal Darboux pseudo-esféricas de curvas sobre uma superfície tipo tempo no 3-espaço de Minkowski e estudamos as singularidades e propriedades geométricas destas imagens normal Darboux. Além disso, investigamos a relação da imagem normal Darboux de Sitter (hiperbólica) de uma curva tipo espaço em S21 com a superfície tipo luz ao longo desta curva tipo espaço. Definimos as superfícies horoesférica e dual hiperbólica de curvas tipo espaço no espaço de Sitter S31 e estudamos estas superfícies usando técnicas da teoria de singularidades. Damos uma relação entre estas superfícies do ponto de vista de dualidades Legendrianas. Finalmente, consideramos curvas sobre uma hipersuperfície tipo espaço no 4-espaço de Minkowski e definimos a superfície hiperbólica desta curva. Estudamos a geometria local da superfície hiperbólica e da curva hiperbólica, que é definida como sendo o local das singularidades da superfície hiperbólica. / We study in this thesis the geometry of curves in Minkowski 3-space and 4-space using singularity theory, more specifically, the contact theory. For this we study the families of height functions and of the distance square functions on the curves. The discriminant sets and bifurcation sets of these families are essential tools in our work. For curves in Minkowski 3-space, we study their focal sets and the bifurcation set of the family of the distance square functions on these curves in order to investigate what happens near the lightlike points. We also study the spherical focal sets and bifurcation sets of curves in the de Sitter space in Minkowski 3-space and 4-space. We define pseudo-spherical normal Darboux images of curves on a timelike surface in Minkowski 3-space and study the singularities and geometric properties of these normal Darboux images. Furthermore, we investigate the relation of the de Sitter (hyperbolic) normal Darboux image of a spacelike curve in S21 with the lightlike surface along this spacelike curve. We define the horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space S31 and study these surfaces using singularity theory technics. We give a relation between these surfaces from the view point of Legendrian dualities. Finally, we consider curves on a spacelike hypersurface in Minkowski 4-space and define the hyperbolic surface of this curve. We study the local geometry of the hyperbolic surface and of the hyperbolic curve that is defined as being the locus of singularities of the hyperbolic surface.
49

Implementação e comparação de métodos de estimativa da dimensão fractal e sua aplicação à análise e processamento de imagens / Implementation and comparison of fractal dimension estimative methods and their use on analysis and image processing.

Backes, Andre Ricardo 27 March 2006 (has links)
A Dimensão Fractal pode ser utilizada para medir algumas características ligadas a complexidade da imagem, permitindo seu uso em análise de formas e texturas e reconhecimento de padrões. Neste trabalho é apresentado um estudo comparativo entre alguns dos principais métodos de estimativa da Dimensão Fractal. Foi realizada uma análise experimental e um estudo de casos para cada uma das técnicas, levando em consideração aspectos de implementação, precisão, variação de resultados segundo ajuste de parâmetros e tolerância a ruídos. Neste trabalho também foi desenvolvido um estudo sobre a Dimensão Fractal Multiescala, visando seu emprego como metodologia de assinatura de complexidade. Na literatura a técnica de multiescala é limitada ao método de Bouligand-Minkowski, sendo aqui ela estendida para outras metodologias de estimativa de Dimensão Fractal. Por meio de análise experimental as metodologias propostas foram comparadas e os resultados discutidos, enfatizando as vantagens e desvantagens destas técnicas. / Fractal Dimension can be used to measure some characteristics related to the image complexity, allowing its use on shape and texture analysis and pattern recognition. In this work is presented a comparative study among some of the most important methods to estimate Fractal Dimension. It was performed a experimental analysis and a case study for each one of the techniques, considering implementation aspects, precision, variation of results under parameters adjustments and noise tolerance. In this work is also performed a study about MultiScale Fractal Dimension, aiming at its use as a methodology of complexity signature. In the literature the multiscale technique is limited to Bouligand-Minkowski method, being here it extended to other methodologies of estimative of Fractal Dimension. By experimental analysis the proposed methodologies were compared and the results argued, emphasizing the advantages and disadvantages of those techniques.
50

Volumes e curvaturas médias na geometria de Finsler:superfícies mínimas / Volumes and means curvatures in Finsler geometry: minimal surfaces

Chavéz, Newton Mayer Solorzano 16 April 2012 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-08-06T11:17:00Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5) / Made available in DSpace on 2014-08-06T11:17:00Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Volumes_e_curvaturas_medias_na_geometria_de_finsler.pdf: 818570 bytes, checksum: fce77ff7f92ae9cc2bf9af2aa0318c4c (MD5) Previous issue date: 2012-04-16 / In Finsler geometry, we have several volume forms, hence various of mean curvature forms. The two best known volumes forms are the Busemann-Hausdorff and Holmes- Thompson volume form. The minimal surface with respect to these volume forms are called BH-minimal and HT-minimal surface, respectively. Let (R3; eFb) be a Minkowski space of Randers type with eFb = ea+eb; where ea is the Euclidean metric and eb = bdx3; 0 < b < 1: If a connected surface M in (R3; eFb) is minimal with respect to both volume forms Busemann-Hausdorff and Holmes-Thompson, then up to a parallel translation of R3; M is either a piece of plane or a piece of helicoid which is generated by lines screwing along the x3-axis. Furthermore it gives an explicit rotation hypersurfaces BH-minimal and HT-minimal generated by a plane curve around the axis in the direction of eb] in Minkowski (a;b)-space (Vn+1; eFb); where Vn+1 is an (n+1)-dimensional real vector space, eFb = eaf eb ea ; ea is the Euclidean metric, eb is a one form of constant length b = kebkea; eb] is the dual vector of eb with respect to ea: As an application, it give us an explicit expression of surface of rotation “ forward” BH-minimal generated by the rotation around the axis in the direction of eb] in Minkowski space of Randers type (V3; ea+eb): / Na Geometria de Finsler, temos várias formas volume, consequentemente várias formas curvaturas médias. As duas mais conhecidas são as formas de volumes Busemann- Hausdorff e Holmes-Thompson. As superfícies mínimas com respeito a estes são chamados superfícies BH-mínimas e HT-mínimas, respectivamente. Seja (R3; eFb) um espaço de Minkowski do tipo Randers com eFb = ea+eb; onde ea é a métrica Euclidiana e eb = bdx3;0 < b < 1: Uma superfície em (R3; eFb) conexa M é mínima com respeito a ambas formas volumes Busemann-Hausdorff e Holmes-Thompson, então a menos de uma translação paralela de R3; M é parte de um plano ou parte de um helicóide, a qual é gerada pela rotação de uma reta (perpendicular ao eixo x3) ao longo do eixo x3: Ademais podemos obter explicitamente hipersuperfícies de rotação BH-mínima e HT-mínima geradas por uma curva plana em torno do eixo na direção de eb] num espaço (a; b) de Minkowski (Vn+1; eFb); onde Vn+1 é um espaço vetorial de dimensão (n+1); eFb = eaf eb ea ; ea é a métrica Euclidiana, eb é uma 1-forma constante com norma b := kebkea; eb] é o vetor dual de eb com respeito a a: Como aplicação, se dá uma expressão explícita de superfície de rotação completa “forward” BH-mínima gerada pela rotação em torno do eixo na direção de eb] num espaço de Minkowski do tipo Randers (V3; ea+eb):

Page generated in 0.038 seconds