Spelling suggestions: "subject:"mirror aymmetry"" "subject:"mirror asymmetry""
31 |
Théorie quantique des singularités, symétrie miroir et hiérarchies intégrables / Quantum singularity theory, mirror symmetry and integrable hierarchiesGuéré, Jérémy 18 June 2015 (has links)
Dans cette thèse, nous établissons un résultat de symétrie miroir dans une gamme de cas pour lesquelles les techniques habituelles reposant sur la concavité ou sur la convexité ne fonctionnent pas. Plus précisément, nous travaillons sur la théorie quantique des singularités développée par Fan,Jarvis, Ruan et Witten, et vue comme un analogue de la théorie de Gromov--Witten via la correspondance LG/CY. Notre résultat principal donne une formule explicite pour le cycle virtuel de Polishchuk et Vaintrob en genre zéro. Dans les cas non-concaves des polynômes dits inversibles, elle nous procure un théorème de compatibilité entre le cycle virtuel de Fan--Jarvis--Ruan--Witten et celui de Polishchuk--Vaintrob. Pour les polynômes qui sont de plus de type chaine, nous obtenons une preuve d'un théorème de symétrie miroir pour la théorie FJRW. Enfin, nous généralisons notre résultat principal et calculons le produit d'intersection entre la classe de Chern maximale du fibré de Hodge et le cycle virtuel en genre quelconque. Spécifié au cas de la théorie des courbes $3$-spin, ceci mène à la preuve d'une conjecture de Buryak sur l'équivalence entre la hiérarchie DR et la hiérarchie $3$-KdV. / In this thesis, we provide a mirror symmetry theorem in a range of cases where the state-of-the-art techniques relying on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials named after Fan, Jarvis, Ruan, and Witten's quantum singularity theory and viewed as the counterpart of a non-convex Gromov--Witten potential via the physical LG/CY correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob's virtual cycle in genus zero. In the non-concave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory. At last, we generalize our main theorem to the computation of intersection numbers between the top Chern class of the Hodge bundle and the virtual cycle in arbitrary genus. In the case of $3$-spin theory, it leads to a proof of Buryak's conjecture on the equivalence between double ramification hierarchy and $3$-KdV hierarchy.
|
32 |
The Frobenius Manifold Structure of the Landau-Ginzburg A-model for Sums of An and Dn SingularitiesWebb, Rachel Megan 27 June 2013 (has links) (PDF)
In this thesis we compute the Frobenius manifold of the Landau-Ginzburg A-model (FJRW theory) for certain polynomials. Specifically, our computations apply to polynomials that are sums of An and Dn singularities, paired with the corresponding maximal symmetry group. In particular this computation applies to several K3 surfaces. We compute the necessary correlators using reconstruction, the concavity axiom, and new techniques. We also compute the Frobenius manifold of the D3 singularity.
|
33 |
Superconformal indices, dualities and integrabilityGahramanov, Ilmar 29 July 2016 (has links)
In dieser Arbeit behandeln wir exakte, nicht-perturbative Ergebnisse, die mithilfe der superkonformen Index-Technik, in supersymmetrischen Eichtheorien mit vier Superladungen (d. h. N=1 Supersymmetrie in vier Dimensionen und N=2 in drei Dimensionen) gewonnen wurden. Wir benutzen die superkonforme Index-Technik um mehrere Dualitäts Vermutungen in supersymmetrischen Eichtheorien zu testen. Wir führen Tests der dreidimensionalen Spiegelsymmetrie und Seiberg ähnlicher Dualitäten durch. Das Ziel dieser Promotionsarbeit ist es moderne Fortschritte in nicht-perturbativen supersymmetrischen Eichtheorien und ihre Beziehung zu mathematischer Physik darzustellen. Im Speziellen diskutieren wir einige interessante Identitäten der Integrale, denen einfache und hypergeometrische Funktionen genügen und ihren Bezug zu supersymmetrischen Dualitäten in drei und vier Dimensionen. Methoden der exakten Berechnungen in supersymmertischen Eichtheorien sind auch auf integrierbare statistische Modelle anwendbar. Dies wird im letzten Kapitel der vorliegenden Arbeit behandelt. / In this thesis we discuss exact, non-perturbative results achieved using superconformal index technique in supersymmetric gauge theories with four supercharges (which is N = 1 supersymmetry in four dimensions and N = 2 supersymmetry in three). We use the superconformal index technique to test several duality conjectures for supersymmetric gauge theories. We perform tests of three-dimensional mirror symmetry and Seiberg-like dualities. The purpose of this thesis is to present recent progress in non-perturbative supersymmetric gauge theories in relation to mathematical physics. In particular, we discuss some interesting integral identities satisfied by basic and elliptic hypergeometric functions and their relation to supersymmetric dualities in three and four dimensions. Methods of exact computations in supersymmetric theories are also applicable to integrable statistical models, which we discuss in the last chapter of the thesis.
|
34 |
The arithmetic geometry of mirror symmetry and the conifold transitionYang, Wenzhe January 2018 (has links)
The central theme of this thesis is the application of mirror symmetry to the study of the arithmetic geometry of Calabi-Yau threefolds. It formulates a conjecture about the properties of the limit mixed Hodge structure at the large complex structure limit of an arbitrary mirror threefold, which is supported by a two-parameter example of a self-mirror Calabi-Yau threefold. It further studies the connections between this conjecture with Voevodsky's mixed motives. This thesis also studies the connections between the conifold transition and Beilinson's conjecture on the values of the L-functions at integral points. It carefully studies the arithmetic geometry of the conifold in the mirror family of the quintic Calabi-Yau threefold and its L-function, which is shown to provide a very interesting example to Beilinson's conjecture.
|
35 |
Topological string theory and applications / Théorie de corde topologique et les applicationsDuan, Zhihao 08 July 2019 (has links)
Cette thèse porte sur diverses applications de la théorie des cordes topologiques basée sur différents types de variétés de Calabi-Yau (CY). Le premier type considéré est la variété torique CY, qui est intimement liée aux problèmes spectraux des différents opérateurs. L'exemple particulier considéré dans la thèse ressemble beaucoup au modèle de Harper-Hofstadter en physique de la matière condensée. Nous étudions d’abord les secteurs non perturbatifs dans ce modèle et proposons une nouvelle façon de les calculer en utilisant la théorie topologique des cordes. Dans la deuxième partie de la thèse, nous considérons les fonctions de partition sur des variétés de CY elliptiquement fibrées. Celles-ci présentent un comportement modulaire intéressant. Nous montrons que pour les géométries qui ne conduisent pas à des symétries de jauge non abéliennes, les fonctions de partition des cordes topologiques peuvent être reconstruites avec seulement les invariants de Gromov-Witten du genre zéro. Finalement, nous discutons des travaux en cours concernant la relation entre les fonctions de partitionnement des cordes topologiques sur les soi-disant arbres de Higgsing dans la théorie de F. / This thesis focuses on various applications of topological string theory based on different types of Calabi-Yau (CY) manifolds. The first type considered is the toric CY manifold, which is intimately related to spectral problems of difference operators. The particular example considered in the thesis closely resembles the Harper-Hofstadter model in condensed matter physics. We first study the non-perturbative sectors in this model, and then propose a new way to compute them using topological string theory. In the second part of the thesis, we consider partition functions on elliptically fibered CY manifolds. These exhibit interesting modular behavior. We show that for geometries which don't lead to non-abelian gauge symmetries, the topological string partition functions can be reconstructed based solely on genus zero Gromov-Witten invariants. Finally, we discuss ongoing work regarding the relation of the topological string partition functions on the so-called Higgsing trees in F-theory.
|
36 |
Confluence of quantum K-theory to quantum cohomology for projective spaces / Confluence de la K-théorique quantique vers la cohomologie quantique pour les espaces projectifsRoquefeuil, Alexis 20 September 2019 (has links)
En géométrie algébrique, les invariants de Gromov—Witten sont des invariants énumératifs qui comptent le nombre de courbes complexes dans une variété projective lisse qui vérifient des conditions d’incidence. En 2001, A. Givental et Y.P. Lee ont défini de nouveaux invariants, dits de Gromov—Witten K-théoriques, en remplaçant les définitions cohomologiques dans la construction des invariants de Gromov—Witten par leurs analogues K-théoriques. Une question essentielle est de comprendre comment sont reliées ces deux théories. En 2013, Iritani- Givental-Milanov-Tonita démontrent que les invariants K-théoriques peuvent être encodés dans une fonction qui vérifie des équations aux q-différences. En général, ces équations fonctionnelles vérifient une propriété appelée “confluence”, selon laquelle on peut dégénérer ces équations pour obtenir une équationdifférentielle. Dans cette thèse, on propose de comparer les deux théories de Gromov— Witten à l’aide de la confluence des équations aux q-différences. On montre que, dans le cas des espaces projectifs complexes, que ce principe s’adapte et que les invariants Kthéoriques peuvent être dégénérés pour obtenir leurs analogues cohomologiques. Plus précisément, on montre que la confluence de la petite fonction J de Givental K-théorique permet de retrouver son analogue cohomologique après une transformation par le caractère de Chern. / In algebraic geometry, Gromov— Witten invariants are enumerative invariants that count the number of complex curves in a smooth projective variety satisfying some incidence conditions. In 2001, A. Givental and Y.P. Lee defined new invariants, called Ktheoretical Gromov—Witten invariants. These invariants are obtained by replacing cohomological objects used in the definition of the usual Gromov—Witten invariants by their Ktheoretical analogues. Then, an essential question is to understand how these two theories are related. In 2013, Iritani-Givental- Milanov-Tonita show that K-theoretical Gromov—Witten invariants can be embedded in a function which satisfies a q-difference equation. In general, these functional equations verify a property called “confluence”, which guarantees that we can degenerate these equations to obtain a differential equation. In this thesis, we propose to compare our two Gromov—Witten theories through the confluence of q-difference equations. We show that, in the case of complex projective spaces, this property can be adapted to degenerate Ktheoretical invariants into their cohomological analogues. More precisely, we show that theconfluence of Givental’s small K-theoretical Jfunction produces its cohomological analogue after applying the Chern character.
|
Page generated in 0.0297 seconds