• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 10
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 53
  • 28
  • 14
  • 14
  • 10
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cells

Green, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
42

The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cells

Green, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
43

Evaluation of Mismatch Repair Gene Polymorphisms and their Contribution to Colorectal Cancer and its Subsets

Mrkonjic, Miralem 08 March 2011 (has links)
Colorectal cancer (CRC) is a major source of morbidity and mortality in the Western world. Approximately 15% of all CRCs develop via the mutator pathway, which results from a deficiency of mismatch repair (MMR) system and leads to genome-wide microsatellite instability (MSI). MLH1 promoter hypermethylation accounts for the majority of MSI CRCs. Numerous single nucleotide polymorphisms have been identified in MMR genes, however their functional roles in affecting MMR system, and therefore susceptibility to MSI CRCs, are unknown. This study uses a multidisciplinary approach combining molecular genetics, epigenetics, and epidemiology to examine the contribution of MMR gene polymorphisms in CRC. Among a panel of MMR SNPs examined, the MLH1 (-93G>A) promoter polymorphism (rs1800734) was shown to be associated with increased risk of MSI CRCs in two Canadian populations, Ontario and Newfoundland. Functional studies of the MLH1-93G>A polymorphism indicate that it has weak effects on the core promoter activity, although it dramatically reduces activity of the shorter promoter constructs in a panel of cell lines. Furthermore, MLH1 gene shares a bi-directional promoter with EMP2AIP1 gene, and the MLH1-93G>A polymorphism increases the activity of the reverse, EPM2AIP1 promoter. Examination of alternative role of the MLH1-93G>A polymorphism in MSI-H CRCs led to evaluation of a 500-kilobase pair chromosome 3 region around the MLH1 gene and identification of two additional SNPs, rs749072 and rs13098279, which are in strong linkage disequilibrium with rs1800734. All three SNPs showed strong associations with MLH1 promoter methylation, loss of MLH1 protein expression, and MSI-H CRCs in three populations, Ontario, Newfoundland, and Seattle. Such findings potentially implicate genetic susceptibility to DNA methylation. Logistic regression models for MSI-H versus non-MSI-H CRCs demonstrate that models including MLH1 IHC status and MLH1 promoter methylation status fit the data most parsimoniously in all three populations combined, however, when rs1800734/rs749072/rs13098279 was added to this model, polymorphisms no longer remained significant indicating that the observed associations of these polymorphisms with the MSI-H CRCs occur through their effect on DNA methylation. This study identified a novel mechanism in which common missense alterations may contribute to complex disease.
44

The Molecular Characterization of Head and Neck Cancer in Young Patients

Machado, Jerry 31 August 2010 (has links)
Head and neck squamous cell carcinomas (HNSCCs) most commonly develop in older patients (≥60 years of age) with a history of tobacco and alcohol use. However, young individuals (≤45 years of age) can also develop HNSCC, often without common risk factors. Increasing evidence shows that Human Papillomavirus (HPV) infection is associated with particular HNSCC sites (e.g. oropharynx). We assessed the Roche Linear Array HPV Genotyping Test in several lesions and then examined the prevalence of HPV in HNSCCs from young and older patients. HPV infection was most prevalent in oropharyngeal cancers (16/22, 73%), rarely found in oral cavity cancers (2/53, 4%), and other head and neck sites (1/17, 6%). HPV positive tumors were associated with patients that were >40 and <60 years old (p=0.02). The absence or shortened time of carcinogen exposure from common risk factors and the development of oral squamous cell carcinoma (OSCC) at an early age suggest aberrant genetic events that are different than those in OSSCs from older patients. We used Affymetrix SNP 6.0 arrays to genomically profile oral tumors from young and older patients. Tumors from young patients showed different regions/genes of copy number alterations than those from older patient tumors. An increase of regions of loss of heterozygosity (LOH) in tumors from older patients was observed, and there was a high prevalence of copy number neutral LOH on chromosome 9 in tumors from young and older patients. These data suggest different genetic mechanisms in these patient groups. We have previously shown that HNSCCs from younger patients exhibited a high incidence of microsatellite instability (MSI), a marker of defective mismatch repair (MMR). Deregulated mRNA levels of hPMS1, hPMS2 and hMLH1 were observed and absent/low expression of hPMS1, hPMS2 and hMLH1 protein levels were observed in >50% of OSCCs. No mutations were observed in hPMS1 and hPMS2 and no significant differences of MSI or LOH were observed across genomic loci between tumors of young and older patients. The role of these genetic mechanisms in oral cancer appears complex; studies such as ours should further improve our knowledge of the molecular mechanisms leading to early-onset oral carcinomas.
45

Mechanism of Mismatch Repair Induced Mutagenesis in Somatic Hypermutation

Frieder, Darina 15 April 2010 (has links)
B cells produce a diverse array of antibody specificities that are of low affinity during the initial phase of a humoral immune response. However, somatic hypermutation of the rearranged V region in the immunoglobulin locus generates new antibody affinities, accompanied by the selection of B cells that produce superior antibody affinities. Somatic hypermutation is initiated by the conversion of G:C base pairs to G:U lesions by the enzyme activation induced cytosine deaminase. Left unrepaired, G:U lesions will give rise to transition mutations at G:C base pairs, but are converted to transition and transversion mutations at G:C and A:T base pairs by the paradoxical participation of the base excision repair and mismatch repair pathways. The mismatch repair pathway, which evolved to correct errors produced during DNA replication, is co-opted by hypermutating B cells to produce A:T mutations via the processing of G:U lesions. This process requires the mismatch repair components Msh2, Msh6, and Exo1, but is additionally dependent upon the translesional DNA polymerase eta, a known A:T mutator, and on ubiquitinated PCNA, an initiator of translesion synthesis. The presence of certain types of lesions in the template strand during DNA replication leads to the activation of translesion synthesis. I propose that a similar mechanism operates during somatic hypermutation to activate translesion synthesis and recruit DNA polymerase eta. Our model suggests that mismatch repair-generated single-stranded DNA tracts contain abasic sites produced as a result of uracil excision by uracil-N-glycosylase. Synthesis opposite abasic sites activates translesion synthesis and results in the recruitment of polymerase eta and the subsequent production of A:T mutations. In this thesis, I present data from hypermutating murine B cells and the B cell line Ramos to support this model, demonstrating that the base excision repair and mismatch repair pathways cooperate during somatic hypermutation to generate A:T mutations. In addition, I explore the role of the Mre11-Rad50-Nbs1 complex in its contribution to A:T mutations in Ramos cells. Taken together, these studies demonstrate that conversion of classical DNA repair pathways into mutation-generating processes is driven by the unique environment of the V region in hypermutating B cells.
46

Genome instability induced by triplex forming mirror repeats in S.cerevisiae

Kim, Hyun-Min 07 April 2009 (has links)
The main goal of this research is to understand molecular mechanisms of GAA/TTC-associated genetic instability in a model eukaryotic organism, S. cerevisiae. We demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin and to block replication fork progression. MutSbeta complex and endonuclease activity of MutLalpha play an important role in facilitation of fragility. In addition to GAA/TTC triplex forming repeats, non-GAA polypurine polypyrimidine mirror repeats that are prone to the formation of similar structures were found to be hotspots for rearrangements in humans and other model organisms. These include H-DNA forming sequences located in the major breakpoint cluster region at BCL2, intron 21 of PKD1, and promoter region of C-MYC. Lastly, we have investigated the effect of the triplex-binding small molecules, azacyanines, on GAA-mediated fragility using the chromosomal arm loss assay. We have found that in vivo, azacyanines stimulate (GAA/TTC)-mediated arm loss in a dose dependent manner in actively dividing cells. Azacyanines treatment enhances the GAA-induced replication arrest. We discovered that also, azacyanines at concentrations that induce fragility also inhibit cell growth. Over 60% of yeast cells are arrested at G2/M stage of the cell cycle. This implies an activation of DNA-damage checkpoint response.
47

BIOCHEMICAL CHARACTERIZATION OF HUMAN MISMATCH RECOGNITION PROTEINS MUTSα AND MUTSβ

Tian, Lei 01 January 2010 (has links)
The integrity of an organism's genome depends on the fidelity of DNA replication and the efficiency of DNA repair. The DNA mismatch repair (MMR) system, which is highly conserved from prokaryotes to eukaryotes, plays an important role in maintaining genome stability by correcting base-base mismatches and insertion/deletion (ID) mispairs generated during DNA replication and other DNA transactions. Mismatch recognition is a critical step in MMR. Two mismatch recognition proteins, MutSα (MSH2-MSH6 heterodimer) and MutSβ (MSH2-MSH3 heterodimer), have been identified in eukaryotic cells. MutSα and MutSβ have partially overlapping functions, with MutSα recognizing primarily base-base mismatches and 1-2 nt ID mispairs and MutSβ recognizing 2-16-nt ID heteroduplexes. The goal of this dissertation research was to understand the mechanism underlying differential mismatch recognition by human MutSα and MutSβ and to characterize the unique functions of human MutSα and MutSβ in MMR. In this study, recombinant human MutSα and MutSβ were purified. Binding of the proteins to a T-G mispair and a 2-nt ID mispair was analyzed by gel-mobility assay; ATP/ADP binding was characterized using a UV cross-linking assay; ATPase activity was measured using an ATPase assay; MutSα amd MutSβ’s mismatch repair activity was evaluated using a reconstituted in vitro MMR assay. Our studies revealed that the preferential processing of base-base and ID heteroduplexes by MutSα and MutSβ respectively, is determined by the significant differences in the ATPase and ADP binding activities of MutSα and MutSβ, and the high ratio of MutSα:MutSβ in human cells. Our studies also demonstrated that MutSβ interacts similarly with a (CAG)n hairpin and a mismatch, and that excess MutSβ does not inhibit (CAG)n hairpin repair in vitro. These studies provide insight into the determinants of the differential DNA repair specificity of MutSα and MutSβ, the mechanism of mismatch repair initiation, and the mechanism of (CAG)n hairpin processing and repair, which plays a role in the etiology and progression of several human neurological diseases.
48

ROLE OF REPLICATION PROTEIN A (RPA) AND PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA) IN DNA MISMATCH REPAIR

Guo, Shuangli 01 January 2005 (has links)
PCNA and RPA are required for DNA mismatch repair (MMR), but their rolesin the pathway are not fully understood. Using an affinity pull-down approach, weshow that (1) increased PCNA binding to DNA heteroduplexes is associated withthe appearance and accumulation of excision products; and (2) RPAphosphorylation occurs when DNA polymerase ?? binds to the DNA substrate. Wetherefore hypothesize that PCNA plays an important role in mismatch-provokedexcision and that RPA phosphorylation plays an important role in DNA resynthesis.To determine the role of PCNA in MMR, mismatch-provoked and nick-directedexcision was assayed in a cell-free system in the presence of the PCNA inhibitor,p21CIP1/WAF. We show that whereas PCNA is essential for 3' directed excision, it isdispensable for the 5' directed reaction, suggesting a differential role for PCNA inMMR. We further find that the PCNA-dependent pathway is the only pathway for3' directed excision, but there are at least two pathways for 5' directed excision,one of which is a PCNA-independent 5' excision pathway. To determine if RPAphosphorylation facilitates DNA resynthesis, a gap-filling assay was developedusing both a cell-free system and a purified system, and we demonstrate that RPAphosphorylation stimulates DNA polymerase ??-catalyzed resynthesis in bothsystems. Kinetic studies indicate that phosphorylated RPA has a lower affinity forDNA compared with un-phosphorylated RPA. Therefore, the stimulation ofresynthesis by phosphorylated RPA is likely due to the fact that phosphorylationpromotes the release of RPA from DNA, thereby making DNA template availablefor resynthesis.
49

MOLECULAR MECHANISM OF HUMAN MISMATCH REPAIR INITIATION

Lee, Sanghee 01 January 2014 (has links)
DNA mismatch repair (MMR) is a highly conserved pathway that maintains genomic stability primarily by correcting mismatches generated during DNA replication. MMR deficiency leads to microsatellite instability (MSI), which is a hallmark of HNPCC (Hereditary Nonpolyposis Colorectal Cancer). Human mismatch repair is initiated by MutSα, a heterodimer of MSH2 and MSH6 subunits. Mismatch binding by MutSα triggers a series of downstream MMR events including interacting and communicating with other MMR proteins. The ATPase domain of MutSα is situated in the C-termini of its both subunits, and ATP binding is required for dissociation of MutSα from a mismatch. In eukaryotic cells, a strand break, which resides either 3’ or 5’ to the mismatch up to several hundred base pair away, determines the strand specificity of MMR. However, in spite of extensive studies, the mechanism by which MutSα locates and senses a nick from the mismatch, and coordinates the subsequent steps of MMR remains poorly understood. Two controversial models have been proposed to explain how the mismatch and the strand break communicate each other. Sliding model proposes that MutSα slides along the DNA helix from the mismatch to the strand break in an ATP binding-dependent but not ATP hydrolysis-dependent manner. Stationary model postulates that MutSα remains bound at the mismatch, and a protein-mediated DNA loop forms, physically bringing the mismatch and the nick in contact. Here, we tested these models in vitro, using a circular plasmid DNA substrate with a single GT mismatch and two Lac repressor (Lac I) binding sites as conditional physical 'roadblocks', one on either side of the mismatch, which when present, prevent MutSα from sliding bi-directionally along the DNA. The results showed that DNA excision initiates under conditions that block MutSα sliding, suggesting that initiation of excision is independent of whether MutSα slides from the mismatch to the nick. This result implies that the communication between the mismatch and the nick is likely through interactions between the mismatch-bound MutSα and other MMR components at the strand break, supporting the stationary model. Therefore, these studies provide significant insight into the mechanisms of mismatch correction in human cells.
50

DNA precursor asymmetries, Mismatch Repair and their effect on mutation specificity

Buckland, Robert January 2015 (has links)
In order to build any structure, a good supply of materials, accurate workers and quality control are needed. This is even the case when constructing DNA, the so-called “Code of Life.” For a species to continue to exist, this DNA code must be copied with incredibly high accuracy when each and every cell replicates. In fact, just one mistake in the 12 million bases that comprise the genome of budding yeast, Saccharomyces cerevisiae, can be fatal. DNA is composed of a double strand helix made up of just four different bases repeated millions of times. The building blocks of DNA are the deoxyribonucleotides (dNTPs); dCTP, dTTP, dATP and dGTP. Their production and balance are carefully controlled within each cell, largely by the key enzyme Ribonucleotide Reductase (RNR). Here, we studied how the enzymes that copy DNA, the replicative polymerases α, δ and ε, cope with the effects of an altered dNTP pool balance. An introduced mutation in the allosteric specificity site of RNR in a strain of S. cerevisiae, rnr1-Y285A, leads to elevated dCTP and dTTP levels and has been shown to have a 14-fold increase in mutation rate compared to wild type. To ascertain the full effects of the dNTP pool imbalance upon the replicative polymerases, we disabled one of the major quality control systems in a cell that corrects replication errors, the post-replicative Mismatch Repair system. Using both the CAN1 reporter assay and whole genome sequencing, we found that, despite inherent differences between the polymerases, their replication fidelity was affected very similarly by this dNTP pool imbalance. Hence, the high dCTP and dTTP forced Pol ε and Pol α/δ to make the same mistakes. In addition, the mismatch repair machinery was found to correct replication errors driven by this dNTP pool imbalance with highly variable efficiencies. Another mechanism to protect cells from DNA damage during replication is a checkpoint that can be activated to delay the cell cycle and activate repair mechanisms. In yeast, Mec1 and Rad53 (human ATR and Chk1/Chk2) are two key S-phase checkpoint proteins. They are essential as they are also required for normal DNA replication and dNTP pool regulation. However the reason why they are essential is not well understood. We investigated this by mutating RAD53 and analyzing dNTP pools and gene interactions. We show that Rad53 is essential in S-phase due to its role in regulating basal dNTP levels by action in the Dun1 pathway that regulates RNR and Rad53’s compensatory kinase function if dNTP levels are perturbed. In conclusion we present further evidence of the importance of dNTP pools in the maintenance of genome integrity and shed more light on the complex regulation of dNTP levels.

Page generated in 0.0647 seconds