• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 7
  • 3
  • 1
  • Tagged with
  • 36
  • 36
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ATP synthase mitochondriale : fonction de la sous-unité ε et biogenèse du F0 / Mitochondrial ATP synthase : function of the ε subunit and biogenesis of F0

Godard, Francois 25 June 2014 (has links)
Dans un premier temps, je me suis intéressé à la sous-unité ε de l’ATP synthase mitochondriale chez la levure, un organisme qui se prête bien à l’étude des fonctions mitochondriales. Cette protéine fait partie d’un élément de l’ATP synthase appelé la tige centrale. Celui-ci permet de coupler le domaine translocateur de protons de cette enzyme (FO) à son secteur catalytique (F1) où l’ATP est synthétisé. En utilisant un système d’expression régulable (répressible par la doxycycline), j’ai montré qu’en l’absence de la sous-unité ε les secteurs F1 et FO ne sont plus couplés, avec pour résultat des fuites massives de protons à travers la membrane interne des mitochondries. J’ai ensuite montré que l’absence de la sous-unité ε peut être compensée par des mutations ralentissant l’activité du FO. Ces données permettent de conclure que la sous-unité ε est nécessaire au maintien de l’intégrité physique de l’ATP synthase lors de son fonctionnement. Dans un second temps, j’ai cherché à identifier de nouveaux facteurs intervenant dans la biogenèse du FO. Pour cela, j’ai utilisé un crible génétique où la survie des cellules de levure est conditionnée à des mutations inactivation le FO. Un millier d’isolats a été analysé. Les mutations ont été localisées dans les génomes mitochondrial et nucléaire. Dix-huit clones, issus de mutations n’affectant pas des facteurs connus pour être nécessaires à l’expression de l’ATP synthase, ont été entièrement séquencés. Plusieurs nouveaux systèmes cellulaires potentiellement impliqués dans la biogenèse du FO ont été identifiés. / At first, I am interested in the ε subunit of mitochondrial ATP synthase in yeast, an organism that is well suited for the study of mitochondrial functions. This protein is a part of the ATP synthase called central stalk. This allows the coupling of proton translocator domain of this enzyme (FO) to its catalytic domain (F1) where ATP is synthesized. Using a tetO expression system, I showed that in the absence of the ε subunit, F1 and FO domains are no longer coupled. It results in a massive proton leakage across the inner membrane of mitochondria. I then showed that the absence of the ε subunit can be compensated by mutations slowing the activity of FO. These data allow to conclude that the ε subunit is necessary to maintain the physical integrity of the ATP synthase for oxydative phosphorylation. Later, I tried to identify new factors involved in the biogenesis of the FO. For this, I used a genetic screen where the survival of yeast cells is conditioned by mutations inactivating the FO. About a thousand clones were analyzed. The mutations were localized in mitochondrial and nuclear genomes. Eighteen clones with mutations in genes encoding not yet known ATP synthase expression factors were completely sequenced. Several new cellular systems that are potentially involved in the biogenesis of FO were identified.
12

Chronic AMP-Activated Protein Kinase Activation and a High-Fat Diet Have an Additive Effect on Mitochondria in Rat Skeletal Muscle

Fillmore, Natasha 02 July 2010 (has links) (PDF)
Factors that stimulate mitochondrial biogenesis in skeletal muscle include AMPK, calcium, and circulating FFAs. Chronic treatment with either AICAR, a chemical activator of AMPK, or increasing circulating FFAs with a high fat diet increases mitochondria in rat skeletal muscle. The purpose of this study was to determine whether the combination of chronic chemical activation of AMPK and high fat feeding would have an additive effect on skeletal muscle mitochondria levels. We treated Wistar male rats with a high fat diet (HF), AICAR injections (AICAR), or a high fat diet and AICAR injections (HF+AICAR) for six weeks. At the end of the treatment period, markers of mitochondrial content were examined in white quadriceps, red quadriceps, and soleus muscles, predominantly composed of unique muscle-fiber types. In white quadriceps, there was a cumulative effect of treatments on LCAD, cytochrome c, and PGC-α protein, as well as on citrate synthase and β-HAD activity. In contrast, no additive effect was noted in the soleus and in the red quadriceps only β-HAD activity increased additively. The additive increase of mitochondrial markers observed in the white quadriceps may be explained by a combined effect of two separate mechanisms: high fat diet-induced post transcriptional increase in PGC-α protein and AMPK mediated increase in PGC-α protein via a transcriptional mechanism. These data show that chronic chemical activation of AMPK and a high fat diet have a muscle type specific additive effect on markers of fatty acid oxidation, the citric acid cycle, the electron transport chain, and transcriptional regulation.
13

NOS2 Induction and HO-­1-­Mediated Transcriptional Control in Gram-­Negative Peritonitis

Withers, Crystal Michele January 2013 (has links)
<p>Nitric oxide (NO) is an endogenous gaseous signaling molecule produced by three NO synthase isoforms (NOS1, 2, 3) and important in host defense. The induction of NOS2 during bacterial sepsis is critical for pathogen clearance but its sustained activation has long been associated with increased mortality secondary to multiple organ dysfunction syndrome (MODS). High levels of NO produced by NOS2 incite intrinsic cellular dysfunction, in part by damaging macromolecules through nitration and/or nitrosylation. These include mitochondrial DNA (mtDNA) and enzymes of key mitochondrial pathways required for maintenance of normal O2 utilization and energy homeostasis. However, animal studies and clinical trials inhibiting NOS2 have demonstrated pronounced organ dysfunction and increased mortality in response to live bacterial infections, confirming that NOS2 confers pro-survival benefits. Of particular interest here, the constitutive NOS1 and NOS3 have been linked to the up-regulation of nuclear genes involved in mitochondrial biogenesis but no comparable role has been described for NOS2. <italic> Therefore, I hypothesized that NOS2 is indispensible for host protection but must be tightly regulated to ensure NO levels are high enough to activate mitochondrial and other pro-survival genes, but below the threshold for cellular damage.</italic></p><p>This hypothesis was explored with two major Aims. The <italic>first Aim</italic> was to define the role of NOS2 in the activation of mitochondrial biogenesis in the heart of <italic>E. coli</italic>-treated mice. The <italic>second</italic> was to investigate the ability of NOS2 to be transcriptionally regulated by an enzyme previously shown to induce mitochondrial biogenesis, heme oxygenase-1 (HO-1). This hypothesis was tested using an <italic>in vivo</italic> model of sublethal heat-killed <italic>E. coli</italic> (<italic>HkEC</italic>) peritonitis in C57B/L6 (Wt), NOS2-/-, and TLR4-/- mice. Additionally, <italic>in vitro</italic> systems of mouse AML-12 or Hepa 1-6 cells pretreated with HO-1 activators or <italic>Hmox1</italic> shRNA prior to inflammatory challenge with lipopolysaccharide (LPS) +/- tumor necrosis factor-&alpha; (TNF-&alpha;). For the first Aim, Wt, NOS2-/-, and TLR4-/- mice were treated with (<italic>HkEC</italic> and cardiac tissue analyzed for mitochondrial function, expression of nuclear and mitochondrial proteins needed for mitochondrial biogenesis, and histological expression of NOS2 and TLR4 relative to changes in mitochondrial mass. For the second Aim, Wt mice were pretreated with hemin or carbon monoxide (CO) to activate HO-1 prior to <italic>HkEC</italic>-peritonitis. Liver tissue in these animals was evaluated at four hours for HO-1 induction, <italic>Nos2</italic> mRNA expression, cytokine profiles, and nuclear factor (NF)-&kappa;B activation. Liver cell lines were pretreated with hemin, CO-releasing molecule (CORM), or bilirubin one hour before LPS exposure and the <italic>Nos2</italic> transcriptional response evaluated at two and 24 hours. The MTT assay was used to confirm that <italic>in vitro</italic> treatments were not lethal. </p><p>These studies demonstrated that <italic>HkEC</italic> induced mtDNA damage in the heart that was repaired in Wt mice but not in NOS2-deficient mice. In KO mice, sustained mtDNA damage was associated with the reduced expression of nuclear (NRF-1, PGC-1&alpha;) and mitochondrial (Tfam, Pol-&gamma;) proteins needed for mitochondrial biogenesis. The findings thus supported that NOS2 is required for mitochondrial biogenesis in the heart during Gram-negative challenge. Evaluation of the relationship between HO-1 and NOS2 in murine liver was more complex; HO-1 activation in <italic>HkEC</italic>-treated Wt mice attenuated 4-hour <italic>Nos2</italic> gene transcription. In liver cell lines, hemin, CORM, and bilirubin were unable to suppress <italic>Nos2</italic> expression at the time of maximal induction (2 hours). <italic>Nos2</italic> was, however, suppressed by 24 hours, suggesting that the regulatory impact of HO-1 induction was not engaged early enough to reduce <italic>Nos2</italic> transcription at 2 hours. It is concluded that NOS2 induction in bacterial sepsis optimizes the expression of the mitochondrial biogenesis transcriptional program, which subsequently can also be regulated by HO-1/CO in murine liver. This provides a potential new mechanism by which immune suppression and mitochondrial repair can occur in tandem during the acute inflammatory response.</p> / Dissertation
14

Efeitos do difenil disseleneto sobre a disfunção mitocondrial na insuficiência hepática aguda induzida por paracetamol em camundongos / Effects of diphenyl diselenide on mitochondrial dysfunction in the acute liver failure induced by acetaminophen in mice

Carvalho, Nélson Rodrigues de 26 February 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Acute liver failure (ALF) induced by acetaminophen (APAP) is a complex process associated with glutathione (GSH) depletion, energetics metabolism changes and mitochondrial dysfunction, resulting in the impairment of maintenance of tissue normal function. On this matter, organoselenium compounds, such as diphenyl diselenide (PhSe)2, have been highlighted in the last years due to the antioxidant properties and the hepatoprotective effects, however, the (PhSe)2 hepatoprotection mechanism remains unclear. So, this work was aimed to deepen into understanding of the effects of (PhSe)2 on the mitochondrial dysfunction as well as the signaling pathway during the ALF induced by APAP. Firstly, it was performed a comparative study between the organoselenium compound and the classical antidote (N-acetylcysteine, NAC) in the liver homogenate. (PhSe)2 presented similar results to the NAC reducing the oxidative damage markers, maintaining the GSH levels and enhancing the survival after the APAP overdose. The treatment with (PhSe)2 reduced plasmatic levels of transaminases (aspartate and alanine aminotransferase) and the morphological/histological changes. In addition, (PhSe)2 was able to reduce significantly the oxidative damage such as lipid peroxidation, reactive oxygen and nitrogen species generation, mitochondrial protein carbonylation and mitochondrial viability after ALF induced by APAP. In this context, the levels of non enzymatic antioxidants, such as GSH, and enzymatic antioxidants, such as catalase, Mn superoxide dismutase, glutathione peroxidase and glutathione reductase remained to the control levels. In general, the results noticed in this work the probably (PhSe)2 mechanism is closely related with the maintenance of antioxidant defense system and inhibition of mitochondrial transition permeability (MPT) indicated by reduction of mitochondrial swelling, activity preservation of respiratory complexes I, II and ATPase, and maintenance of H+ gradient with the mitochondrial membrane potential (Δψm) generation. It was observed that (PhSe)2 was able to limit the impairment of mitochondrial bioenergetics function with the normalization of oxidative phosphorilation (OXPHOS) and activation of heat shock protein pathway through the enhance of HSP70 levels, which in turn, modulates the MPT protecting the mitochondrial viability. (PhSe)2 treatment was able to maintain the appropriated levels of cytokines associated with the liver recovery, such as tumoral necrosis factor alfa (TNF-α), interleukin 6 (IL-6) and nuclear factor kappa B (NF-κB). Moreover, the integrity of cellular bioenergetic function could be associated with the increase of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), helping to restore the nuclear respiratory factor 1 (NRF1) levels associated with the mitochondrial biogenesis. Finally, (PhSe)2 could be a useful therapeutic alternative that would contribute to the liver recovery, controlling the quality of mitochondrial function and maintaining homeostasis and cellular health. / A insuficiência hepática aguda (IHA) induzida por paracetamol (APAP) é um processo complexo que envolve depleção de glutationa (GSH), mudanças no metabolismo energético e disfunção mitocondrial, o que resulta na incapacidade de manter o funcionamento adequado do órgão. Neste contexto, a utilização de compostos orgânicos de selênio como o difenil disseleneto (PhSe)2 tem se destacado nos últimos anos, devido as propriedades antioxidantes e efeitos hepatoprotetores, no entanto, o mecanismo pelo qual (PhSe)2 age não está totalmente esclarecido. Assim, este estudo busca aprofundar nossos conhecimentos sobre as ações do (PhSe)2 na disfunção mitocondrial assim como a sinalização intracelular durante a IHA induzida por APAP. Para tanto, estabelecemos primeiramente um parâmetro comparativo entre o composto orgânico de selênio e o antídoto clássico (N-acetil cisteina, NAC), em homogenato. O (PhSe)2 foi tão efetivo quanto NAC reduzindo os marcadores de dano oxidativo, auxiliado na manutenção dos níveis de GSH e aumentando o tempo de sobrevivência após a intoxicação por APAP. O tratamento com (PhSe)2 reduziu alterações morfológica, minimizou o dano quando analisamos histologicamente o tecido hepático e determinou uma redução nos níveis plasmáticos dos indicadores de dano hepatocelular (AST e ALT). Além disso, o (PhSe)2 foi eficaz na redução significativa do dano oxidativo ao limitar a peroxidação lipídica, formação de espécies reativas de oxigênio e nitrogênio, carbonilação de proteínas mitocondriais e viabilidade mitocondrial após a IHA induzida por APAP. Neste contexto, os níveis de antioxidantes não enzimáticos, tais como GSH, e enzimáticos, tais como as enzimas catalase, manganês superoxido dismutase, glutationa peroxidase e glutationa redutase, também foram mantidos semelhantes ao grupo controle. Em geral os resultados observados neste estudo indicam que um importante mecanismo pelo qual o (PhSe)2 exerce os seus efeitos terapêuticos está relacionado a manutenção da atividade do sistema de defesa antioxidante e inibição da transição de permeabilidade mitocondrial (MPT) indicados pela redução do inchaço mitocondrial, preservação da atividade dos complexos respiratórios I, II e ATPase, e manutenção do gradiente de H+ com a formação do potencial de membrana mitocondrial (Δψm). Também observamos que o (PhSe)2 limita a perda do funcionamento bioenergético mitocondrial com a manutenção dos níveis adequados de fosforilação oxidativa (OXPHOS) e ativa a via das proteínas do choque térmico aumentando a expressão de HSP70, a qual apresenta um efeito modulador importante sobre a MPT preservando a viabilidade mitocondrial. O tratamento com (PhSe)2 foi efetivo em preservar níveis apropriados de citocinas envolvidas na recuperação do tecido hepático, tais como fator de necrose tumoral alfa (TNF- α), interleucina 6 (IL-6) e fator nuclear kappa B (NF-κB). Além disso, a manutenção bioenergética celular poderia estar associada com os elevados níveis transcricionais do receptor gama ativado por proliferador de peroxissoma (PGC-1α) que auxilia a restaurar os níveis de fator nuclear respiratório 1 (NRF1) os quais estão envolvidos no processo de biogênese mitocondrial. Por fim, o (PhSe)2 poderia ser uma importante alternativa terapêutica a qual auxiliaria na recuperação do fígado, controle de qualidade mitocondrial e manutenção da homeostase e saúde celular.
15

Contrôle et régulation de la biogenèse mitochondriale chez la levure Saccharomyces cerevisiae / Control and regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae

Yoboue, Djaha Edgar 15 December 2011 (has links)
Les mitochondries sont des organites qui remplissent d'importantes fonctions au sein de la cellule eucaryote notamment dans le métabolisme énergétique. En fonction de l'état physiologique (par exemple une variation de la demande énergétique), on peut constater d'importantes variations du contenu mitochondrial cellulaire. Ces variations impliquent une modification de la biogenèse mitochondriale qui est un processus complexe mettant à contribution divers acteurs protéiques ainsi que les génomes nucléaire et mitochondrial. Nous avons étudié la régulation de la biogenèse mitochondriale chez la levure Saccharomyces cerevisiae. Chez cet organisme, un des éléments clés de la biogenèse du compartiment mitochondrial est le facteur de transcription hétéromérique HAP. Ce dernier est constitué de 4 sous-unités dont la sous-unité activatrice est la protéine Hap4p. Nous avons mis en évidence une régulation de la protéine Hap4p par le stress oxydant et l'état rédox du glutathion. Ainsi, un stress oxydatif induit par des molécules pro-oxydantes ou encore un dysfonctionnement de la chaîne respiratoire mitochondriale induit une diminution de la protéine Hap4p. Cette diminution conduit à une diminution de la quantité de marqueurs mitochondriaux tels que les cytochromes et une forte diminution de la vitesse de respiration et de la vitesse de croissance. Nous nous sommes aussi intéressés à la régulation du complexe HAP par la molécule d'hème. Nos résultats sont les premiers à clairement mettre en évidence une régulation positive de la quantité de Hap4p par l'hème et suggèrent aussi une régulation post-traductionnelle de Hap4p par l'état rédox de cette molécule. Tous ces résultats apportent des éléments supplémentaires dans l'étude des mécanismes de la communication mitochondrie-noyau et de la régulation de la biogenèse mitochondriale. / Mitochondria are organelles that play important functions in eukaryotic cell especially in energy metabolism. According to the physiological state (for example energy demand variation), mitochondrial content can vary in large amounts within the cell. These variations involve the modification of mitochondrial biogenesis which is a complex process which depends on many proteins and both nuclear and mitochondrial genomes. We studied the regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. In this organism, a key component of mitochondrial biogenesis is the heteromeric transcription factor HAP. It is constituted by 4 subunits, Hap4p being the activator subunit. We showed a regulation of Hap4p protein by oxidative stress and the glutathione redox state. Thus, oxidative stress induced by pro-oxidants or by mitochondrial respiratory chain dysfunction leads to a decrease in the Hap4p protein level. This decrease of Hap4p leads to a decrease in mitochondrial markers level such as cytochromes and a decrease of the respiratory and growth rates. We also interested in the regulation of the HAP complex by heme. Our results are the first to clearly show a positive regulation of Hap4p level by heme and also suggest a post-translational regulation of Hap4p by the heme redox state. Altogether, these results represent novel pieces to the study of the mitochondria-nucleus communication and the regulation of mitochondrial biogenesis.
16

Rôle de SIRT1 et de la biogenèse mitochondriale dans la prolifération des cellules du muscle lisse de l'artère pulmonaire / The role of SIRT1 and mitochondrial biogenesis in the proliferation of pulmonary artery smooth muscle cells

Zurlo, Giada 04 December 2015 (has links)
L’hypertension artérielle pulmonaire (HTAP) est une maladie mortelle caractérisée par un important remodelage vasculaire, principalement dû à l’hyperprolifération et à la résistance à l’apoptose des cellules du muscle lisse de l’artère pulmonaire (CML-AP). Récemment il a été montré que les CML-AP présentent un remodelage du métabolisme énergétique, avec une régulation négative de l’oxidation phosphorylante associée à une activation de la voie glycolytique, qui semble contribuer à leur phénotype particulier. La désacétylase sirtuine1 (SIRT1) est un important modulateur du métabolisme énergétique, notamment via son activation de peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), régulateur clé de la biogenèse mitochondriale. Dans cette étude, nous montrons pour la première fois que la prolifération des CML-AP de rat et humaines est caractérisée par une réduction de l’activité de SIRT1, et est augmentée suite à l’inhibition pharmacologique ou la sous-expression spécifique de SIRT1. De plus, suite à hypoxie chronique, des souris génétiquement déficientes en SIRT1 présentent un remodelage vasculaire plus important que celui observé chez les souris contrôles, ce qui est associé à une augmentation accentuée de l’hypertrophie et de la pression systolique du ventricule droit. Au contraire, l’activation pharmacologique de SIRT1 inhibe fortement la prolifération des CML-AP, et est associée à l’activation de la biogenèse mitochondriale. L’ensemble de ces résultats suggère que l'inactivation de SIRT1 joue un rôle causal dans l’hyperprolifération des CML-AP et cette enzyme pourrait être une nouvelle cible thérapeutique prometteuse pour le traitement de l’HTAP. / Pulmonary arterial hypertension (PAH) is a lethal disease characterized by an intensive vascular remodelling, mainly due to hyper-proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs). Recently it has been found that PASMCs, similarly to cancer cells, demonstrate a shift in energy metabolism from oxidative phosphorylation towards glycolysis thus contributing to their particular phenotype. The deacetylase sirtuin1 (SIRT1) is an important modulator of energy metabolism, particularly via its activation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), the master regulator of mitochondrial biogenesis. Here we show for the first time that rat and human PASMC proliferation is characterised by a diminution of SIRT1 activity, and is potentiated by SIRT1 pharmacological inhibition or specific downregulation. Moreover, after chronic hypoxia exposure, SIRT1 KO mice display a more intense vascular remodelling compared to their control littermates and this is associated with an exacerbated increase in right ventricle systolic pressure and hypertrophy. Conversely, pharmacological SIRT1 activation strongly inhibits PASMC proliferation, and is associated with the activation of mitochondrial biogenesis. In general, the data obtained show that SIRT1 inactivation plays a causative role in PASMC proliferation and this enzyme could be a promising therapeutic target for PAH treatment.
17

Bakteriální proteiny v biogenezi mitochondrií jednobuněčných eukaryot. / Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.

Petrů, Markéta January 2019 (has links)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
18

IDENTIFICATION OF HUMAN PGC-1α-b ISOFORMS USING A NOVEL PGC-1α-b SPECIFIC ANTIBODY

Hedrick, Shannon 22 November 2013 (has links)
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known as the master regulator of mitochondrial biogenesis. PGC-1α holds this role by acting as a transcriptional coactivator for an array of transcription factors and nuclear hormone receptors, such as NRF-1/2 and ERRα/γ, whose downstream targets function in mitochondrial biogenesis and oxidative phosphorylation. PGC-1α is regulated both at the transcriptional and post-translational level in several signaling pathways, including p38 MAPK and AMPK. This regulation affects which transcription factor binding events can occur in a given tissue, and thus affects regulation of PGC-1α target genes. PGC-1α is downregulated in many neurodegenerative disorders as well as in muscular dystrophies, diabetes, and aging. Therefore, PGC-1α is prized as a potential therapeutic target to create novel treatments for these various diseases.However, details governing the spatio-temporal regulation of PGC-1α are not completely understood, and overexpression of PGC-1α throughout the body or even in certain tissues or subsets of cells have had detrimental effects in animal and cell models. Therefore, it is necessary to gain knowledge of how to modulate PGC-1α in a tissue-specific manner utilizing these different levels of regulation in order to develop novel therapies. In order to further understand all the functions that have been attributed to PGC-1α, the PGC-1α isoforms need to be accounted for and understood in human tissues. Several murine isoforms have been published, as well as several human brain and muscle isoforms. However, most of these isoforms have only been validated as mature transcripts, and it is not known whether they produce functional protein. Our lab has identified the isoform b transcript in human brain tissue via 5’ RACE and have developed an isoform b specific antibody. This project aimed to characterize the isoform b transcripts and also to validate and optimize this antibody for immunoblotting conditions for detection of further PGC-1α-b isoform protein variants in human tissues. Preliminary studies in our lab have shown that in postmortem frontal cortex from age-matched PD and healthy patients, isoform a transcript levels were 10-15 times more abundant than that of isoform b. These differences in regulation could be partially attributed to the isoform b promoter region being heavily methylated, as shown in this thesis through bisulphite cloning and sequencing as well as 454 bisulphite sequence analysis. The high degree of methylation, correlated with the low level of isoform b transcript in brain and it is not known whether this transcript would be translated into protein in this tissue. In order to probe for isoform b protein expression using human cell lines and tissues, however, it was necessary to create a recombinant protein in order to have a positive control with which to optimize our novel antibody. In our previous 5’ RACE studies, an alternatively spliced PGC-1α-b transcript was found which coded for an early stop codon. This truncated isoform was called PGC-1α-b-3T1, and mature transcript was found in both human skeletal muscle and brain. For this project, PGC-1a-b-3T1 was cloned from human skeletal muscle into a bacterial expression vector to create a recombinant GST fusion protein. This protein was used to validate and optimize our PGC-1α-b specific antibody as well as to determine sensitivity and specificity. The purified recombinant protein contained 3 bands of lower molecular weight that were detected via western blot with both GST and the PGC-1α-b specific antibody. These bands were trypsin cleaved and subjected to mass spectrometry analysis, which verified that all bands detected by the PGC-1a-b specific antibody contained the epitope sequence, and thus binding was specific. This protein was then used to determine western blotting conditions and sensitivity, which is 10 ng using a 1:100 dilution of the antibody. This antibody was then used to probe SH-SY5Y WCL, a human neuroblastoma cell line. Peptide competition assay confirmed 5 PGC-1α-b specific proteins in these lysates. The sizes of these proteins matched to several murine PGC-1α-b isoforms as well as putative PGC-1α-b versions of PGC-1a-a isoforms. These findings provided the putative identities of several endogenous functional human PGC-1α-b isoforms. Mammalian overexpression vectors of these isoforms are still in development. By using this antibody and these expression vectors to further characterize these isoforms, including determining tissue specificity, more knowledge of PGC-1α will be gained. This information could then be used to develop novel, tissue specific treatments for pharmacological intervention of diseases characterized by PGC-1α misregulation.
19

Metabolismo oxidativo e estado redox tecidual dependente da função e do estado nutricional de operárias de Apis mellifera L. / Oxidative metabolism and redox state dependent on the function and nutritional status of Apis mellifera L. workers

Cervoni, Mário Sergio 03 December 2018 (has links)
As operárias de Apis mellifera realizam diferentes tarefas de acordo com a sua idade (polietismo etário), sendo que operárias jovens cuidam da cria e quando mais velhas forrageiam. Entretanto, tal transição não segue uma cronologia fixa, mas se ajusta às necessidades da colônia, especialmente as condições nutricionais, tanto da colônia quanto dos indivíduos. Nesse sentido, abordamos a questão de como o metabolismo oxidativo no corpo gorduroso das operárias, i.e., o centro do metabolismo intermediário destes insetos, está relacionado com alterações da função das operárias na colônia e como o mesmo responde a um estresse nutritivo imposto individualmente em duas fases, na fase larval e na fase adulta. Como métodos para avaliar a atividade mitocondrial e o estado redox das células do corpo gorduroso utilizamos um sistema de respirometria de alta resolução para medir o consumo de O2, e realizamos ensaios bioquímicos para quantificar a geração de espécies reativas de oxigênio (EROs), os níveis de óxido nítrico, o número de unidades mitocondriais, e eventuais danos oxidativos resultantes. Ademais, por meio de PCR quantitativa medimos a expressão relativa de genes ligados à biogênese mitocondrial, ao sistema antioxidante e à via de sinalização por hipóxia. Na comparação destes parâmetros entre operárias nutridoras e forrageiras avaliamos separadamente os três principais compartimentos do corpo (cabeça, tórax e abdômen) uma vez que esses estão diferencialmente relacionados a tais funções. Para os tecidos da cabeça observamos que as amostras de nutridoras apresentaram maior consumo de O2, associado a uma maior produção de EROs e expressão elevada dos genes da via de hipóxia, enquanto forrageiras apresentaram maiores quantidades de transcritos dos genes do sistema antioxidantes e menores níveis de danos oxidativos. Para os tecidos do tórax observamos nas forrageiras uma maior capacidade de produção de ATP, acompanhada de uma elevada expressão de genes codificadores de enzimas do sistema antioxidante e menores níveis de danos oxidativos. Com relação aos tecidos abdominais, as abelhas nutridoras apresentaram maior atividade mitocondrial, enquanto as amostras de forrageiras apresentaram maior número de unidades mitocondriais, elevados níveis EROs e também uma expressão elevada dos genes do sistema antioxidante e da via de hipóxia. Assim, os dados revelaram uma clara mudança na atividade mitocondrial e nos padrões redox teciduais associados a esta transição de polietismo etário. Também notamos diferenças nestes parâmetros para cada compartimento do corpo analisado, refletindo uma demanda energética diferencial em cada tecido. A segunda parte do projeto teve como objetivo avaliar os mesmos parâmetros redox em uma situação de restrição alimentar em três situações distintas. O primeiro grupo experimental foi constituído de larvas que sofreram restrição calórica por umperíodo de 10 horas. O segundo grupo foi composto por abelhas recém emergidas que sofreram ou não tal restrição calórica no período larval. O terceiro grupo consistiu de abelhas que sofreram ou não restrição calórica no período larval, e após emergirem foram mantidas em caixas até atingirem a idade de 7 dias, quando foram submetidos novamente a uma restrição calórica. Para o primeiro grupo, as larvas, verificamos que após o período de restrição calórica os genes relacionados com a biogênese mitocondrial e o sistema antioxidante apresentaram níveis de expressão menores comparadas com larvas controle. Observamos também que larvas que sofreram restrição calórica apresentaram menor consumo de O2 e menores níveis de EROs. Para o segundo grupo, as abelhas recém emergidas, não observamos nenhuma diferença na expressão de genes mitocondriais e do sistema antioxidante entre as que sofreram ou não restrição calórica na fase larval, demostrando uma recuperação nestes parâmetros após o período de metamorfose. No terceiro grupo, as abelhas de 7 dias foram submetidas a uma nova restrição calórica para observar se indivíduos que passaram por a situação de estresse no período larval apresentariam uma resposta mais imediata a um estresse nutricional na fase adulta. Os resultados do terceiro grupo revelaram que abelhas que haviam sido expostas a uma situação prévia de restrição calórica, apresentaram uma redução dos transcritos de genes ligados a biogênese mitocondrial e do sistema antioxidante quando comparados ao grupo que sofreu restrição calórica apenas na fase adulta. Em conjunto nossos dados sugerem que a restrição calórica é capaz de diminuir o metabolismo oxidativo e que existe uma resposta aparentemente adaptativa em indivíduos adultos que passaram por essa situação previamente durante o desenvolvimento larval. Assim, esses resultados podem servir para direcionar estudos futuros sobre a relação entre restrição calórica, metabolismo oxidativo e longevidade nesses insetos sociais. / Apis mellifera workers perform different tasks according to their age (age polyethism), where young workers care for the brood and older ones become foragers. However, this a transition does not follow a fixed chronology, but is fitted to the needs of the colony, especially the nutritional conditions of both, the colony and the individual bee. In this sense, we address the question of how oxidative metabolism in the fat body of the workers, e.g., the center of the intermediary metabolism of these insects, is related to changes in the function of the workers in the colony, and how these parameters responds to a nutritional stress imposed individually in two stages, in the larval and adult phase. For evaluating mitochondrial activity and the redox status of fat body cells we used a high resolution respirometry system to measure O2 consumption, and we performed biochemical assays to measure the generation of reactive oxygen species (ROS), levels of nitric oxide, the number of mitochondrial units, and eventual oxidative damages. Furthermore, using quantitative PCR, we measured the relative expression of genes linked to mitochondrial biogenesis, to the antioxidant system, and to the hypoxia signaling pathway. In the comparison of these parameters between nurse and forager workers, we evaluated separately the three main body compartments (head, thorax and abdomen), since these are differentially related to these functions. For the head tissues, we observed that nurses showed higher O2 consumption, associated with higher ROS production and elevated expression of hypoxia pathway genes, while foragers presented higher amounts of transcripts of the antioxidant system genes and lower levels of oxidative damages. For the thorax tissues we found in the foragers a greater capacity of ATP production, accompanied by a higher expression of genes encoding enzymes of the antioxidant system and lower levels of oxidative damage. With respect to the abdominal tissues, nurse bees presented higher mitochondrial activity, while foragers had a higher number of mitochondrial units, elevated ROS levels, and also a higher expression of genes related to the antioxidant system and hypoxia pathway. Thus, these data revealed a clear change in mitochondrial activity and redox tissue patterns associated with this transition of age polyethism. We also noticed differences in these parameters for each of the analyzed body compartment, reflecting a differential energy demand in each tissue. The second part of the project aimed to evaluate the same redox parameters in a food restriction condition in three distinct situations. The first experimental group consisted of larvae that experienced caloric restriction for a 10 hour period. The second group consisted of newly emerged bees that had or not experienced such a caloric restriction in the larval period. The third group consisted of bees that had experienced or not caloric restriction during the larval period, and after emergence were kept in boxes until reaching 7 days old, when they were resubmitted to another caloricrestriction. For the first group, the larvae, we found that after the period of caloric restriction, genes related to mitochondrial biogenesis and the antioxidant system presented lower levels of expression compared to control larvae. We also observed that larvae that had experienced caloric restriction presented lower O2 consumption and lower ROS levels. For the second group, newly emerged bees, we did not observe any differences in the expression of mitochondrial genes and the antioxidant system among those individuals that had experienced or not caloric restriction in the larval phase, indicating a recovery in these parameters after the period of metamorphosis. In the third group, the 7-day-old bees had experienced a new caloric restriction to see whether individuals that had been in a stressful situation during larval period would respond more readily to nutritional stress in adulthood. The results for this group showed that bees that had been exposed to a previous caloric restriction presented a reduction in the transcript levels of genes related to mitochondrial biogenesis and the antioxidant system when compared to the group that experienced caloric restriction only in adulthood. Taken together, our data suggest that caloric restriction is able to diminish the oxidative metabolism, and that there is a seemingly adaptive response in adult individuals that had previously experienced this situation during larval development. Thus, these results can serve to direct future studies on the relationship between caloric restriction, oxidative metabolism and longevity in these social insects.
20

Efeitos da restrição calórica nas vias de sinalização por insulina e óxido nítrico: implicações para biogênese, morfologia e função mitocondriais / Calorie restriction restriction effects on insulin and nitric oxide signaling: implications to mitochondrial biogenesis, morphology and function.

Cerqueira, Fernanda Menezes 27 February 2012 (has links)
A restrição calórica (RC) estende a expectativa de vida de muitos organismos por mecanismos ainda em estudo. Entre os vários efeitos fisiológicos da RC encontra-se o aumento na biogênese mitocondrial, dependente de óxido nítrico (NO&#8226;), sintetizado pela enzima óxido nítrico sintase endotelial (eNOS). Um dos indutores fisiológicos mais potentes da eNOS é a insulina, cujos níveis plasmáticos são consideravelmente reduzidos nos organismos em RC. O objetivo deste trabalho foi investigar os mecanismos associados ao aumento da sinalização por NO&#8226; durante a RC in vivo e in vitro, e as conseqüências celulares do aumento de massa mitocondrial no que diz respeito à longevidade e capacidade respiratória celulares. Submetemos camundongos Swiss fêmeas à RC de 40% e observamos um considerável aumento tecido-específico na fosforilação basal de Akt e eNOS em músculo esquelético, tecido adiposo visceral e cérebro, os quais também apresentaram maior massa mitocondrial. A associação entre a sinalização por insulina, NO&#8226; e biogênese mitocondrial foi adicionalmente confirmada em um grupo de camundongos tratados com o desacoplador mitocondrial dinitrofenol (DNP), que também reduz a insulinemia e aumenta a longevidade em camundongos. Para o estudo mecanístico deste fenômeno, usamos soros de ratos Sprague-Dawley submetidos à RC de 40% ou alimentados ad libitum (AL) em cultura celular de células vasculares da musculatura lisa (VSMC), reproduzindo um protocolo descrito para RC in vitro. O uso do soro RC aumentou a fosforilação do receptor de insulina e Akt, a expressão de eNOS e nNOS (forma neural da NOS) e a fosforilação de eNOS, o que se refletiu em maior liberação de nitrito (NO2) no meio de cultura. Inibindo-se a Akt, todos os efeitos promovidos pela RC na sinalização por NO&#8226; foram revertidos. Ao se imunoprecipitar do soro a adiponectina, citocina conhecida por aumentar a sensibilidade à insulina, aumentada durante a RC, os efeitos do soro RC na via de sinalização de insulina foram abolidos e, conseqüentemente, os efeitos na sinalização por &#8226;NO foram prevenidos. Neurônios de células granulosas de cerebelo, que não expressam eNOS, apenas nNOS, foram cultivados com os soros AL ou RC, e também apresentaram considerável aumento na sinalização por &#8226;NO. Estas alterações induziram a biogênese mitocondrial e capacidade respiratória, e foram associadas à maior longevidade celular. Os mesmos efeitos mitocondriais foram observados em células secretoras de insulina, INS1, entretanto a secreção de insulina em resposta à glicose tornou-se inibida, por um mecanismo desconhecido, porém associado a reduzidos níveis intracelulares de espécies oxidantes, moléculas-chave para a secreção de insulina; e à alteração da morfologia mitocondrial, provavelmente devido à maior expressão de mitofusina-2 (Mfn-2). Ao se nocautear a Mfn-2, houve um aumento na geração de EROs e as células em RC passaram a secretar insulina a níveis comparáveis aos das células controle. Concluímos que durante a RC a maior sensibilidade à insulina aumenta a atividade de eNOS, via Akt, associada à maior biogênese mitocondrial. A adiponectina é uma molécula-central nestes eventos. A expressão de nNOS também é afetada, por mecanismos desconhecidos. O aumento de biogênese mitocondrial eleva a capacidade respiratória celular e impacta positivamente a longevidade in vitro. A alteração da morfologia mitocondrial associa-se a alterações na produção de oxidantes intracelulares e mudanças na secreção de insulina. / Calorie restriction (RC) is known to extend the lifespan in many organisms, and its mechanisms of action are still under investigation. Enhanced mitochondrial biogenesis driven by nitric oxide (&#8226;NO), synthesized by the endothelial nitric oxide synthase (eNOS), is proposed to be a CR central effect. Insulin is one of the most potent physiological activators of eNOS. However, plasmatic insulin levels are dramatically reduced in organisms under CR. The goal of this work was uncover the mechanisms associated with enhanced &#8226;NO signaling during CR, in vivo and in vitro, as well as the cellular consequences of increased mitochondrial mass, regarding lifespan and reserve respiratory capability. Female Swiss mice were submitted to 40% of CR. A tissue-specific (skeletal muscle, abdominal adipose tissue and brain) increment in basal Akt and eNOS phosphorylation, which was related to enhanced mitochondrial biogenesis, was observed. Indeed, this association was also verified in tissues from mice treated with low doses of a mitochondrial uncoupler, dinitrophenol (DNP). To unveil the mechanism behind the insulin signaling effects on &#8226;NO levels, serum from Sprague-Dawley rats submmited to 40% of CR was used to culture in VSMC cells, an in vitro CR protocol. CR sera enhanced insulin receptor (IR) and Akt phosphorylation, as well as nitrite (NO2-) accumulation in the culture media, the expression of eNOS and nNOS (neural NOS isoform) and eNOS phosphorylation. The effects of CR sera were reversed by Akt inhibition. The immunoprecipitation of serum adiponectin, a cytokine known to improve peripheral insulin sensitivity, also reversed the CR serum effects on insulin and &#8226;NO signaling. Cerebellar neurons, which do not express eNOS, just nNOS, were also cultured with CR or AL serum and also presented striking increments in &#8226;NO signaling, associated with mitochondrial biogenesis, increased reserve respiratory capability and lifespan extension. The mitochondrial effects promoted by CR were also observed in insulin secreting cells (INS1). However, under the CR condition, insulin secretion stimulated by glucose was impaired. The likely explanations are reduced mitochondrial reactive oxygen species (ROS) generation, or the alteration in mitochondrial morphology, associated, in our model, with enhanced mitofusin-2 expression (Mfn-2). In cells which the Mfn-2 was knocked down, insulin secretion in CR and AL groups was responsive to glucose at the same level, and the intracellular oxidants levels were much higher. Overall, CR improves &#8226;NO signaling due to enhanced insulin sensitivity, through Akt, and results in mitochondrial biogenesis. Adiponectin is a key molecule in this phenomenon. Increments in mitochondrial mass enhance the cellular reserve respiratory capability and lifespan. Mitochondrial morphology alterations are associated with possible decreases in ROS generation and impaired insulin release, maintained the low levels of plasmatic insulin.

Page generated in 0.0643 seconds