• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 10
  • 4
  • 1
  • Tagged with
  • 58
  • 29
  • 16
  • 15
  • 14
  • 13
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Bicarbonato/CO2 aumenta dano em isquemia-reperfusão: da observação inicial à caracterização molecular / Bicarbonate/CO2 increase damage in ischemia-reperfusion injury: from observation to molecular characterization

Bruno Barros Queliconi 17 October 2014 (has links)
Bicarbonato é uma importante espécie química para os seres vivos, sendo o principal tampão celular, alem de apresentar uma negligenciada atividade redox. Isquemia é um evento no qual existe inibição do aporte de nutrientes e oxigênio, sendo a reperfusão o retorno do fluxo de nutrientes e oxigênio, que é acompanhada por alta produção de radicais livres e morte celular. Nessa tese estudamos o efeito da presença de bicarbonato durante a isquemia-reperfusão. Em nosso modelo nós mantivemos o pH constante e modulamos a quantidade de bicarbonato enquanto células, órgãos e animais foram submetidos a isquemia-reperfusão. Utilizamos condições sem a presença de bicarbonato, a concentração basal sanguínea e uma concentração mais alta simulando o acúmulo de bicarbonato em condições isquêmicas. Nesses diversos modelos mostramos que a presença de bicarbonato aumenta o dano provocado por isquemia-reperfusão e provoca um aumento do acúmulo de proteínas oxidadas. A presença do bicarbonato não modifica a respiração, produção de espécies reativas de oxigênio, ou a morfologia mitocondrial, também não detectamos mudança na atividade do proteassoma e nos indicadores de autofagia geral. Entretanto detectamos um acúmulo de marcadores autofágicos na fração mitocondrial indicando inibição da mitofagia. Essa inibição foi confirmada ao detectarmos o acúmulo de uma proteína degradada especificamente por mitofagia enquanto não houve mudança em outra degradada pelo proteassoma. Além disso, ao inibirmos farmacologicamente a autofagia, reproduzimos o fenótipo causado pelo bicarbonato mesmo na sua ausência. Em conclusão, a presença de bicarbonato é deletéria em condições de isquemia/reperfusão devido a inibição da mitofagia / Bicarbonate is an important molecule in all living being, acting as the main cellular buffer. However, its biological and redox activity has been mostly neglected to date. Ischemia is an event in which an inhibition of nutrient availablity and oxygen flow occurs, while reperfusion is the return of nutrients and oxygen, accompanied of a burst of reactive oxygen species production and cell death. Here, we studied the effects of bicarbonate during cardiac ischemia-reperfusion. In our model, we kept the pH stable and changed the concentration of the bicarbonate. We then subjected cells, organs and animals to ischemia-reperfusion under conditions where there was no presence, basal blood concentration or a higher concentration of bicarbonate. In these diverse models, we found that the presence of bicarbonate increased damage after a ischemia-reperfusion, and promoted the accumulation of oxidized proteins. Bicarbonate did not change respiration, production of reactive oxygen species or the morphology of the mitochondria. There were also no changes in proteasome activity and in global autophagy markers, although there was an accumulation of mitophagy markers. We also found that mitophagy was responsible for the increased damage observed, since pharmacological inhibiting of autophagy abolished the increased damage caused by the presence of bicarbonate. In conclusion the presence of bicarbonate is deleterious in ischemia-reperfusion due mitophagy inhibition
32

Rôle de la dysfonction mitochondriale dans deux maladies neurodégénératives, la Maladie de Huntington et la Maladie de Parkinson / The role of the mitochondrial dysfunction in two neurodegenerative diseases, Huntington's disease and Parkinson's disease

Damiano, Maria 06 May 2014 (has links)
Un dysfonctionnement mitochondrial est impliqué dans plusieurs maladies neurodégénératives, corrélé avec une augmentation des niveaux de stress oxydant. Les anomalies mitochondriales observées dans les tissus des patients, les modèles animaux et cellulaires des maladies de Huntington et de Parkinson, suggèrent l'implication de la mitochondrie dans leur pathogénie.Les deux projets discutés dans ce manuscrit se focalisent sur le rôle des aspects particuliers de la physiologie mitochondriale au cours des deux maladies. / Mitochondrial dysfunction has been implicated in several neurodegenerative diseases and is correlated with augmented levels of intracellular oxydant stress. The mitochondrial defects observed in tissues from patients, as well as in animal and cellular models of Huntington’s and Parkinson’s diseases, suggest the implication of mitochondria in the pathogenesis of these diseases. The two projects discussed in this manuscript focus on the role of particular aspects of mitochondrial physiology in these diseases. By the first project we show the role of defective mitochondrial respiratory chain compex II in several rodent models of Huntington’s disease. By using a lentivirus-based gene transfert strategy we highlight the neuroprotective potential of the striatal overexpression of the subunits of complex II. The second project focus on Parkin and PINK1, two proteins implicated in the autosomal recessive, hereditary forms of Parkinson’s disease and in mitochondrial quality control mechanisms, such as mitophagy. In a cellular model we show that the two proteins facilitate Drp1-dependent mitochondrial fission. We show that Parkin may facilitate the signaling pathways controlling the activity of the pro-fission protein Drp1. This effect is probably indirect and mostly PINK1-independent. On the contrary, in mitochondrial depolarization conditions, by FRET (Förster Resonance Energy Transfer) a direct spatial coordination of Parkin, PINK1 and Drp1 is observed, which seems to be determinant for the efficiency of mitophagy. My projects shed new light on pathogenic mechanisms and open new perspectives in the research on these diseases.
33

Identification de nouvelles fonctions de la protéine BHRF1 du virus Epstein-Barr : Modulation de la dynamique mitochondriale, fission mitochondriale et autophagie sélective / Identification of new functions of BHRF1 protein of Epstein-Barr virus : Modulation of mitochondrial dynamic, mitochondrial fission and selective autophagy.

Vilmen, Géraldine 18 July 2017 (has links)
Le virus Epstein-Barr (EBV), un membre de la famille des Herpesviridae, est associé à la mononucléose infectieuse et à différents types de cancers comme le lymphome de Burkitt, les lymphomes post-transplantation ou encore le carcinome du nasopharynx. Ce virus est capable de persister à vie dans l’organisme en combinant des phases de latence et des phases de multiplication active. L’autophagie est un processus cellulaire primordial qui conduit à la dégradation et au recyclage de protéines à longue durée de vie et d’organites endommagés ou vieillissants. Elle contribue non seulement à maintenir l’homéostasie cellulaire mais aussi à s’adapter aux conditions environnementales. Souvent décrite comme un mécanisme antiviral, l’autophagie est contrecarrée par de nombreux virus. Elle peut également être détournée à leur profit. Il a été démontré que l’EBV est capable de stimuler l’autophagie durant le cycle lytique et d’échapper à la dégradation dans les autolysosomes en bloquant la maturation des autophagosomes. Le but de cette étude était d’identifier des protéines virales impliquées dans la modulation du processus autophagique par l’EBV. Nous avons démontré que l’expression ectopique de BHRF1, une protéine transmembranaire de 17kDa orthologue de la protéine cellulaire Bcl-2, module l’autophagie.Alors que Bcl-2 est une protéine anti-autophagique, nous avons établi par différentes approches que l’expression de BHRF1 conduit à l’accumulation d’autophagosomes. De plus, en utilisant une sonde tandem bifluorescente LC3 (mRFP-GFP-LC3) pour étudier le flux autophagique, nous avons montré que BHRF1 stimule l’autophagie. BHRF1 est engagée dans un complexe avec Beclin1, une protéine de la machinerie autophagique. Nous avons établi que BHRF1 est localisée au niveau des membranes mitochondriales et du réticulum endoplasmique (RE). L’expression de BHRF1 est associée à une réorganisation du réseau mitochondrial conduisant à la formation d’agrégats mitochondriaux juxta-nucléaires. Considérant l’importance des microtubules dans l’autophagie et le transport des mitochondries, nous avons exploré la dynamique des microtubules et les modifications post-traductionnelles de la tubuline après expression de BHRF1. Nous avons observé un recrutement d’acétyl-tubuline autour des mito-aggresomes associé à un réseau intact de microtubules. Nos résultats ont montré que le réseau de microtubules et l’hyper-acétylation de l’alpha-tubuline sont nécessaires pour former les mito-aggrésomes induits par BHRF1. Par différentes approches, nous avons démontré le rôle de BHRF1 dans l’induction de la mitophagie, un processus qui entraine la clairance des mitochondries endommagées par autophagie. Considérant le rôle des mitochondries endommagées dans l’induction de l’apoptose, nous suggérons que le rôle anti-apoptotique de BHRF1 pourrait être associé à l’induction de la mitophagie. / Epstein-Barr virus (EBV), a member of the Herpesviridae family, is associated with infectious mononucleosis and with several types of cancers including Burkitt’s lymphoma, post-transplant B-cell lymphoma disease and nasopharyngeal carcinoma. This virus is able to establish persistent infection and to undergo lytic cycle after reactivation. Autophagy is a critical cellular process leading to degradation of long lasting proteins and damaged or aging organelles. It contributes not only to maintain cell homeostasis but also to the adaptation to environmental stresses. Sometimes, autophagy is described as an antiviral mechanism, and viruses have evolved multiple strategies to subvert it or to hijack it to their own profit. It has been reported that EBV is able to stimulate autophagy during lytic cycle and then to escape degradation within autolysosomes by blocking autophagosomes maturation. The aim of my study was to identify EBV viral proteins involved in this modulation. Among the numerous viral proteins encoded by EBV, we have identified BHRF1, a transmembrane protein homolog of cellular protein Bcl-2, which was able to modulate autophagy by ectopic expression.Whereas Bcl-2 is an anti-autophagic protein, we demonstrated by different approaches that BHRF1 expression leads to accumulation of autophagosomes. Moreover, using tandem-fluorescent-tagged LC3 (mRFP-GFP-LC3), which is based on different pH stability of GFP and mRFP fluorescent proteins, for monitoring autophagic flux, we clearly confirmed that BHRF1 stimulates autophagy. By co-immunoprecipitation we demonstrated that BHRF1 is part of acomplex including Beclin1, a protein of the autophagic machinery. We characterized the subcellular localization of BHRF1, and report that BHRF1 is localized in mitochondria and ER membranes. Expression of BHRF1 leads to a complete reorganization of the mitochondria network to form juxtanuclear mitochondrial aggregates. Based on the importance of microtubules on both autophagy and mitochondria transport, we explored microtubule dynamics and tubulin post-translational modifications after BHRF1 expression. We observed a clustering of acetyl-tubulin around the mito-aggresomes associated with an intact microtubules network. Our results showed that the microtubules network and the hyperacetylation of alpha-tubulin were both required to form BHRF1-induced mito-aggresomes.By different approaches, we demonstrated the role of BHRF1 in the induction of mitophagy, a process which promotes the clearance of impaired mitochondria by autophagy. We hypothesized that the role of BHRF1 to protect against apoptosis and to promote cell survival is related to the induction of selective autophagy.
34

Mechanisms and function of mitophagy in adaptation to heat stress during development of C. elegans / Mécanismes et fonction de la mitophagie dans l'adaptation au stress thermique pendant le développement de C. elegans

Chen, Yanfang 23 July 2019 (has links)
Le stress thermique résulte d'une exposition à une température située au-delà de la plage optimale pour un organisme. L’impact du stress thermique est variable selon son intensité, allant d’un effet bénéfique à la mort de l’organisme. Mon travail de thèse a établi un modèle de stress thermique aigu (aHS pour acute Heat Stress) chez C. elegans et a étudié ses effets sur l'homéostasie cellulaire, le développement des vers et la réponse autophagique. Un aHS au cours du 4ème stade larvaire induit un retard de développement, mais aucune létalité ni stérilité. Ce stress de développement entraîne la fragmentation massive mais transitoire des mitochondries, la formation d'agrégats dans la matrice et la diminution de la respiration mitochondriale. En outre, l’aHS déclenche un flux autophagique associé à des événements de mitophagie dans de nombreux tissus et en particulier dans l'épiderme. Nous avons montré que la réponse autophagique à l’aHS était protectrice pour les animaux. De plus, nous avons découvert que dans l’épiderme, les mitochondries sont les principaux sites de biogenèse des autophagosomes, en conditions physiologique et en aHS. Nous avons également constaté que la protéine DRP-1 (dynamin related protein 1) est impliquée dans le processus de mitophagie induite par l'aHS. Chez les animaux mutants drp-1 soumis au aHS, la fission mitochondriale est impossible, l’autophagie est induite mais les autophagosomes sont anormaux et agrégés sur la mitochondrie. À partir de ces données, nous proposons que DRP-1 participe au contrôle de la qualité des mitochondries stressées en coordonnant la fission mitochondriale et la biogenèse des autophagosomes. J'ai également étudié plusieurs protéines pouvant être impliquées dans les zones de contact entre le réticulum endoplasmique et les mitochondries, ainsi que leurs rôles sur la morphologie mitochondriale et l'autophagie, dans des conditions physiologiques ou d’aHS. De plus, nous avons développé de nouveaux outils pour analyser les sites de contact ER-mitochondries. / Heat stress results from an exposure to a temperature beyond the optimum range of an organism. The impact of heat stress can range from beneficial to lethal due to the severity of stress. My thesis work established an acute heat stress (aHS) model in C. elegans and studied its effects on cell homeostasis, worm development and autophagy response. aHS during the 4th larval stage induces a developmental delay but no lethality or sterility. This developmental stress results in the massive but transitory fragmentation of mitochondria, the formation of aggregates in the matrix and the decrease of mitochondrial respiration. In addition, aHS triggers an active autophagy flux associated to mitophagy events in many tissues and particularly in epidermis. We showed that the autophagy response upon aHS is protective for the animals. Moreover, we discovered that in the epidermis, the mitochondria are the major sites for autophagosome biogenesis in both standard and aHS. We also found that the dynamin related protein DRP-1 is involved in aHS-induced mitophagy process. In drp-1 animals submitted to aHS, mitochondrial fission is unable to achieve, and despite autophagy induction the autophagosomes cluster and elongate abnormally on mitochondria. From these data, we propose that DRP-1 is involved in the quality control of stressed mitochondria by coordinating mitochondrial fission and autophagosomes biogenesis. I also studied several proteins which may be involved in contact zones between endoplasmic reticulum and mitochondria, and their roles on mitochondrial morphology and autophagy, in physiological or aHS conditions. Furthermore, we have developed new tools for further studying the ER-mitochondria contact sites.
35

Vps13D Is a Regulator of Pink1-Mediated Mitophagy and Membrane Contacts

Shen, James L. 29 March 2021 (has links)
Autophagy is the delivery of cytoplasmic cargo to lysosomes for degradation. Defects in autophagy are responsible for various diseases, including neurodegenerative diseases and cancer. While studies in yeast have largely characterized autophagy in response to nutrient starvation, these elegant studies do not account for autophagy in other contexts, including selective autophagy of organelles. A previous screen identified Vps13D as a gene required for the autophagic removal of mitochondria, mitophagy. Vps13D is highly conserved and essential in animals, and Vps13d loss-of-function mutants have enlarged mitochondria and mitophagy deficiencies in both cell and animal models. However, the mechanism by which Vps13D regulates these processes has not been defined. Here, I use mitochondrial clearance in the developing Drosophila intestine and fibroblasts from VPS13D mutant patients as experimental models to investigate the function of Vps13D. I discover that Vps13D is a regulator of ubiquitin and Atg8a/LC3/GABARAP localization around mitochondria. These functions are dependent on Pink1, a ubiquitin kinase, and the core autophagy machinery, respectively. Furthermore, Vps13D regulates mitochondria and endoplasmic reticulum (ER) contact sites downstream of Vmp1, a repressor of mitochondria and ER contact sites. I find that Marf, a mitochondria and ER tether and regulator of mitochondrial fusion, acts downstream of both Vmp1 and Vps13D. These findings explain the phenotypes in Vps13d mutants, as dysregulation of ubiquitin, Atg8a, and mitochondria and ER membrane contact sites impair regulation of both autophagy and mitochondria morphology.
36

The Role of Tsg101 in the Development of Physiological Cardiac Hypertrophy and Cardio-Protection from Endotoxin-Induced Cardiac Dysfunction

Essandoh, Kobina 19 November 2019 (has links)
No description available.
37

The Role of the Intermembrane Domain of Mulan in Mitophagy and Cell Death

Herbert, Jared M 01 January 2016 (has links)
Mulan is an E3 ubiquitin ligase and an E3 SUMO ligase embedded in the outer mitochondrial membrane. Mulan plays a major role in various cell processes including cell growth, mitophagy, apoptosis, and mitochondrial dynamics. In addition, its deregulation is involved in the development and progression of several human disorders such as neurodegeneration and heart disease. There are two main discernible domains in Mulan: a large cytoplasmic domain that encodes the RING-finger motif and carries out the catalytic activity of the protein; the second domain of Mulan is exposed to the intermembrane space of mitochondria, and its function remains unknown. This part of Mulan is also referred to as the BAM domain and is expected to have a significant function since its amino acid sequence has been conserved through evolution and is found in bacteria, animals, and plants. The purpose of this study is to isolate and characterize potential binding partner proteins of the BAM domain using the yeast two-hybrid system. These studies are expected to provide new information on the physiological function of this domain and how it is potentially used to modulate the ligase activity of Mulan.
38

Mitochondrial quality control regulation by small GTPase RAB20

Nayak, Sunayana Govind 19 September 2022 (has links)
No description available.
39

Mitochondrial Quality Control Adaptations Support Malignant Progression of Serous Ovarian Cancer Cells and Spheroids

Grieco, Joseph Patrick 26 April 2022 (has links)
Serous ovarian cancer is the 5th leading cause of cancer-related deaths in women, with a 30% survival rate when spread into the highly hypoxic and visceral peritoneal cavity. Despite efforts to treat this highly metastatic disease, traditional chemotherapeutic and cytoreductive therapies are unable to diminish or induce cell death of circulating metastases from colonizing secondary sites due to their genetic and histologic heterogeneity and development of drug resistance. The dissemination route for primary metastasis, however, is most often conserved to the peritoneal cavity, which is low in nutrients and hypoxic (1-2% O2). Cells exfoliated from the primary tumor will aggregate during migration, which elicits a survival signal to maintain viability in this environment. The underlying cellular and molecular changes involved with aggregation have yet to be determined. We have previously found that aggregation of murine ovarian surface epithelial (MOSE) cells present a more suppressed metabolic phenotype upon aggregation. My research sought to identify how the mitochondria were internally regulated to support malignant transformation, migration, and invasion through modulation of quality control, mitochondrial dynamics, mitophagy, and mitobiogenesis. We have shown that aggregation of cancer cells supports increased mitochondrial fragmentation localized to the hypoxic core of our spheroid models. Further, aggregation supports enhanced viability through an upregulation of cancer genetic pathways associated with cell death, proliferation, stemness, and epithelial mesenchymal transition (EMT). Nutrient deprivation during migration further enhanced mitochondrial fragmentation and induction of mitophagy to prevent activation of apoptosis. Additionally, we have identified a phenotypic switch from enhanced mitophagy during peritoneal dissemination that supports survival of ovarian cancer cell aggregates to mitochondrial biogenesis during secondary tissue colonization that enables proliferation upon invasion. We have associated these changes with an increased bioenergetic proliferative niche through inhibition of proliferation, migration, and mitochondrial translation. This research has contributed to the understanding for the role of mitophagy as a survival rather than apoptotic signal in cancer cells as adaptation to nutrient-deprived environments, while also identifying how these processes can be reversed upon adhesion to support invasion and metastatic capacity during secondary colonization. This research is significant because it will identify molecular adaptations associated with the viability of disseminating cancer metastases as well as promote novel preventative therapeutics that can be used to limit the mortality of highly aggressive ovarian cancer in women. / Doctor of Philosophy / Ovarian cancer continues to be one of the highest contributors of gynecologic cancer-related deaths in women. This is due to limited symptomology, biomarker availability, and screenings for patients. Women are mostly diagnosed when the disease has already spread throughout the abdominal cavity which makes treatment much more difficult and, accordingly, the survival rate is much lower. Ovarian metastases mostly spread throughout the peritoneal cavity. Interestingly, this cavity has been identified to being limited in nutrients and oxygen that are essential for survival thus suggesting that these cancer cells must adapt to these harsh conditions to remain viable. We have previously observed that the cancer cells are able to clump together, and form 3D structures known as spheroids which have drastically reduced their proliferation and appear highly resistant tor treatment than single cells. In this project, we wanted to determine how the mitochondria (primary energy producers) were structurally changing in response to the formation of these spheroids and in nutrient- and oxygen-starved conditions. We have found that these organelles become much smaller and circular in low-oxygen conditions, especially in the center of the spheroids. Further, we found changes in cancer- and mitochondrial-related pathways during spheroid formation which could further support survival. Finally, we found that key functions related to the mitochondrial quality control and enhanced mitochondrial content and activity are switched when changing nutrient availability from low oxygen and nutrient conditions to oxygenated and nutrient-rich conditions and generate conditions that allow the spheroids to attach to abdominal organs and form secondary tumors. This research is important because it suggests new possible markers that can be used as therapeutic targets to prevent these aggressive functions associated with more terminally staged disease.
40

Influenza A Virus PB1-F2 Protein: its Role in Pathogenesis

Deventhiran, Jagadeeswaran 31 July 2015 (has links)
Influenza A virus (IAV) causes annual seasonal epidemics and occasional pandemics resulting in significant levels of mortality and socio-economic costs worldwide. PB1-F2 is a small non-structural protein encoded by an alternate +1 open reading frame in the PB1 gene. PB1-F2 is considered to play important roles in primary influenza virus infection and post-influenza secondary bacterial pneumonia in mice. It is a multifunctional and enigmatic protein with diverse functions attributed to it and the precise contribution of PB1-F2 to the IAV life cycle in avian and mammalian hosts remains largely unknown. In the triple-reassortant H3N2 (TR H3N2) swine influenza virus (SIV) background, we found that PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology in pigs. On the other hand, in turkeys, deletion of PB1-F2 resulted in early induction of clinical disease and effective transmission among the turkey poults. Interestingly, the virulence associated 66S mutation in PB1-F2 abolished the ability of the IAV to successfully infect turkeys and transmit to in-contacts. These results highlight the strain- and species-specific role of PB1-F2 protein. We also demonstrated that specific amino acid residues in the C-terminal of PB1-F2 determine the pathogenicity of 2009 swine-origin pandemic H1N1 virus in a mouse model. The C-terminal residues 73K, 75R, and 79R together with 66S increased virus replication, decreased type I interferon response, increased infiltration of neutrophils and myeloperoxidase production in lungs resulting in acute respiratory distress syndrome (ARDS) in mice with characteristic clinical and pathological features of acute lung injury (ALI). Further, we found that PB1-F2 induces mitochondrial superoxide production and mitochondrial damage in a sequence dependent manner in IAV-infected lung epithelial cells. PB1-F2-mediated mitochondrial damage promotes Parkin-mediated mitophagy but suppresses the autophagic degradation of damaged mitochondria in the infected lung epithelial cells. Accumulated dysfunctional mitochondria likely to aggravate host cell death and inflammatory responses. Taken together, the present findings enhance our understanding of PB1-F2 protein as a virulence determinant in IAV infection in a species- and strain-specific manner and provide new insights into the impact of genetic changes in PB1-F2 on the host pathogenesis of virulent IAV strains. / Ph. D.

Page generated in 0.0339 seconds